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Abstract. Deep learning methods have been widely and successfully applied to
the medical imaging field. Specifically, fully convolutional neural networks
have become the state-of-the-art supervised segmentation method in a variety of
biomedical segmentation problems. Two fully convolutional networks were
proposed to sequentially achieve accurate lobar segmentation. Firstly, a 2D
ResNet-101 based network is proposed for lung segmentation and 575 chest CT
scans from multicenter clinical trials were used with radiologist approved lung
segmentation. Secondly, a 3D DenseNet based network is applied to segment
the 5 lobes and a total of 1280 different CT scans were used with radiologist
approved lobar segmentation as ground truth. The dataset includes various
pathological lung diseases and stratified sampling was used to form training and
test sets following a ratio of 4:1 to ensure a balanced number and type of
abnormality present. A 3D CNN segmentation model was also built for lung
segmentation to investigate the feasibility using current hardware. Using 5-fold
cross validation a mean Dice coefficient of 0.988 ± 0.012 and Average Surface
Distance of 0.562 ± 0.49 mm was achieved by the proposed 2D CNN on lung
segmentation. 3D DenseNet on lobar segmentation achieved Dice score of
0.959 ± 0.087 and Average surface distance of 0.873 ± 0.61 mm.
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1 Introduction

1.1 Conventional Lung and Lobar Segmentation

Segmentation of pathologic lungs on CT images has been investigated in a number of
studies. Voxel classification utilizing local texture features has been used to segment
abnormal lung regions [1]. Applying anatomical model constraint was another strategy
to overcome the challenge of pathological lung segmentation [2]. For example, cur-
vature of ribs [3] was used to assist the selection of optimal thresholds to segment the

© Springer Nature Switzerland AG 2018
D. Stoyanov et al. (Eds.): RAMBO 2018/BIA 2018/TIA 2018, LNCS 11040, pp. 202–214, 2018.
https://doi.org/10.1007/978-3-030-00946-5_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00946-5_21&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00946-5_21&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00946-5_21&amp;domain=pdf


lung. A modified convex hull algorithm [4] was introduced to extract coarse lung
regions present with diffuse lung disease followed by morphological analysis as post-
processing. Traditional lobar segmentation is usually achieved by fissure
detection/segmentation and a variety of methods have been proposed to accomplish this
task, such as watershed, level set, and SVM based. Occasionally, segmentation of
airway and vessels are used to assist. However, most of the methods were evaluated on
a relatively small datasets and their efficiency is not ideal for high throughput pro-
cessing. More importantly, they still struggle when confronted with pathological lungs
which are common in clinical practice.

1.2 Deep Learning in Medical Image Segmentation

Deep learning methods have been successfully applied to various medical image
analysis problems [5–7]. More specifically, fully convolutional neural networks
(FCN) [8] have become the state-of-the-art approach for segmentation on many
imaging modalities. U-Net [9] has demonstrated success in many biomedical image
segmentation problems, including cell segmentation in microscopic images. SegNet
[10], which is a deep Encoder-Decoder neural network, showed promising results
regarding lung segmentation in chest radiographs. Volumetric image based methods
were also introduced, such as 3D U-Net [11] and V-Net [12], to segment prostate and
kidney in MR. As for FCN application on chest CT, Harrison et al. [13] proposed a
progressive and multi-path holistically nested 2D network (P-HNN) for lung seg-
mentation. The method was evaluated on a large dataset including many pathological
lungs. A V-Net [14] like architecture was proposed by IBM research aimed at volu-
metrically segmenting the lung with more spatial context. It demonstrated promising
results using a 3D CNN. A relatively small input size was used to compromise the
memory constraints and this actually caused noticeable under-segmentation near the
boundary. George et al. [15] applied the same P-HNN method on lobar segmentation
using 2D axial slices, and the crude segmentation from CNN was followed by a 3D
random walker to refine it. Presumably, it is difficult to segment different lobes based
on 2D slices without spatial context and a 3D volume based method has the potential to
overcome this obstacle.

1.3 ResNet and DenseNet

The Residual Network (ResNet [16]) has been the state-of-the-art image recognition
architecture and won first place on the ILSVRC-2015 classification task. Due to its
much deeper network with residual learning it demonstrated exceptional performance,
surpassing previous models such as VGG [17] and GoogleNet [18]. More recently,
DenseNet [19] was introduced in which each layer is connected to every other layer in
a feed-forward fashion. It is easier to train due to the improved flow of gradients
throughout the network and able to achieve better performance using fewer parameters.

In this paper, we will introduce two fully convolutional networks applied
sequentially achieve accurate lobar segmentation. In the first stage, a 2D ResNet-101
based model is used for lung segmentation. Thereafter, a 3D DenseNet based network
is applied to perform lobar segmentation based on the initial lung segmentation.
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2 Materials

The chest CT images used in this study were collected retrospectively from 6 multi-
center clinical trials. This provides image acquisition at different sites with variations in
slice thickness, reconstruction kernel, scanner, etc. The slice thickness range is
[0.625 mm, 3 mm], in-plane (x-y) spacing range is [0.467 mm, 1 mm], tube current
range is [80 mA, 644 mA] and reconstruction kernels include a range from smooth to
sharp. In total, 575 chest CT scans from different subjects were used, each with
radiologist-approved lung segmentation. 143 scans are from subjects enrolled in
Chronic Obstructive Pulmonary Disease (COPD) clinical trials and 432 are from
interstitial pulmonary fibrosis (IPF) trials. These cases contain common lung
parenchymal abnormalities including emphysema, ground glass, fibrosis, nodule, and
honeycombing. Sample axial images of these disease patterns are shown in Fig. 1.

The ground truth reference lung segmentations of these scans were derived using an
independent semi-automated segmentation. Specifically, the scans were segmented
using a threshold-based anatomical model technique [20, 21], followed by manual
editing by lab technologists. Finally, radiologists performed review, editing as needed,
and approved the final segmentation. Two thoracic radiologists were involved, both
with more than 20 years experience.

Balanced sampling, rather than random sampling, was used to form training and
test sets that were balanced in terms of the number and type of abnormalities present.
The whole image set was sorted based on the mean Hounsfield Unit (HU) within the
lung in ascending order. As a consequence, scans with lower and higher mean lung
intensity are likely corresponding to cases with emphysema and IPF, respectively. For
every 5 scans of the sorted image set, they were split into training, and test following a
ratio of 4:1. 5-fold cross validation with balanced distribution was used and each scan
was used for testing exactly once. At each fold, the training set consisted of 460 scans,
and the test set was composed of 115 scans. Using this approach similar to stratified
cross validation [22], the composition distributions of training, and test set are similar
to the original dataset. For a specific scan, only slices (axial images) with lung seg-
mentation (i.e., containing lung) were used.

Fig. 1. Sample axial chest CT of cases with different lung disease in our dataset, including
(a) emphysema, (b) ground glass, (c) honeycombing, and (d) fibrosis.

204 X. Wang et al.



For lobar segmentation, 705 more scans were used to increase the size of data set
with a total number of 1280 scans and all of them have corresponding radiologist
approved lobar segmentations. The resolution (z spacing) limit is <= 3 mm since our
method is 3D volume based. Similar to the previous 575 scans used in lung seg-
mentation, the additional 705 scans also include different types of lung abnormalities.
In terms of breath-hold type, 1193 scans were acquired at Total Lung Capacity
(TLC) and 87 at Residual Volume (RV). The same data sorting and splitting strategy
was used to form training and test set.

3 Methods

3.1 Network Architectures

Figure 2 shows the general structure of ResNet-101 based segmentation architecture
with input and output size of 256 � 256. The original input image was progressively
scaled down 5 times (from 256 � 256 to 8 � 8). Each down-sampling stage includes a
residual block, stride of 2 convolution to downsize feature maps. In the de-convolution
section, corresponding 5 times up-sampling was used to recover the same resolution as
the input image, i.e., from 8 � 8 back to 256 � 256. Each up-sampling stage includes
transposed convolution, concatenation and a residual block. Following the same
strategy suggested by Szegedy et al. [23], the number of feature maps in the de-
convolutional layer was cut by half every time the image size doubles. Also, skip-
connections were used in the up-sampling process to incorporate finer details from the
lower layers as well as abstract and sematic information from higher layers.

The 3D DenseNet based network is shown in Fig. 3. The down-sampling path
includes 4 Transitions Down and 4 Dense Block. Corresponding up-sampling path
includes 4 Transitions Up and 4 Dense Block. Transitions Down modules include
[Convolution3D, Dropout and Max-pooling]. Transitions Up modules include
[Transposed Convolution3D and Dropout]. The Dense Block includes 4 densely
connected layers. This architecture was used both in 3D lung segmentation (to compare
with 2D CNN) and lobar segmentation. In the case of lung segmentation, the input was
a raw image and a sigmoid is used in the final layer. For the lobar segmentation, the
input is raw image plus lung mask and softmax is used. To mitigate memory con-
straints, we decided to perform lobar segmentation on the left and right lung separately.
A previous anatomical model based method [21] was used for left and right lung
separation.

3.2 Pre-processing, Data Augmentation, and Training

Preprocessing of each CT scan prior to inputting to the CNN involved normalization
and rescaling. Image intensity was clipped to range from −1000 HU to +1000 HU and
then normalized to [0.0, 1.0]. For 2D model, each slice was resized to 256 � 256.

Similarly, each scan was resized to 128 � 128 � 128 as the input for 3D model.
The model was trained from scratch, rather than applying transfer learning using pre-
trained weights. Real-time data augmentation was applied using rotation and
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translation, with the CPU responsible for generating new samples and the GPU for the
computation to improve the uniqueness of the augmented data. Dice loss was used as
the loss function since it has been shown to be more robust in segmentation problems.

Training of the model was performed using a NVIDIA TITAN X with 12 GB of
memory. The Keras deep learning package [24] was used for implementation. Dice
Similarity Coefficient and Average Surface Distance were used as evaluation metric.

4 Results

4.1 Lung Segmentation

During testing, the whole scan was fed into the segmentation network to generate a 3D
lung segmentation for both the 2D and 3D CNN model. For a single test scan with 200
slices, it takes about 5 s to segment the whole lung.

Table 1 illustrates the segmentation results by the proposed 2D CNN model, 3D
CNN model and also previous threshold and anatomical based method [20, 21]
developed by our group. Specifically, only 3 out of the total 575 scans from 2D CNN
segmentation and 9 scans from 3D CNN segmentation had a Dice coefficient below
0.95. While for our previous method, there were 111 cases with a Dice score below
0.95 from.

Figure 4 shows three example segmentations with different amount of fibrosis
present (from mild to severe) by the proposed 2D based CNN, 3D based CNN and

Fig. 2. ResNet-101 based lung segmentation architecture.
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previous threshold anatomical model based methods. The second row corresponds to
Dice scores of (0.954, 0.931, 0.847) and ASD of (0.575 mm, 1.689 mm, 4.51 mm) by
the threshold and anatomical model based method. 2D CNN achieved Dice scores of
(0.989, 0.980, 0.976) and ASD of (0.36 mm, 0.505 mm, 1.18 mm). 3D CNN achieved
Dice scores of (0.979, 0.969, 0.970) and ASD of (0.484 mm, 0.677 mm, 1.653 mm).

Fig. 3. 3D DenseNet architecture used for lobar segmentation. Dashed lines indicate skip
connection from down-sampling to up-sampling.

Table 1. Lung segmentation results comparison between the CNN based and previous threshold
and anatomical model based methods

Dice coefficient ASD (mm)

2D CNN based 0.988 ± 0.012 0.562 ± 0.49
3D CNN based 0.980 ± 0.017 0.581 ± 0.52
Threshold and anatomical model 0.965 ± 0.023 0.599 ± 0.47

High Throughput Lung and Lobar Segmentation by 2D and 3D CNN 207



The CNN based methods achieved much better segmentation when the attenuation of
the lung changed significantly due to disease.

Figure 5 shows example segmentations of emphysema, ground glass and honey-
combing by the proposed the CNN methods as well as our previous threshold and
anatomical model based method for comparison. In these examples, there are no major
attenuation changes in the lung and all three methods were able to achieve good
segmentation relative to the ground truth. The Dice scores of these 3 cases (from left to
right) are (0.992, 0.973, 0.974) by the threshold and anatomical based method, (0.991,
0.984, 0.976) by 2D CNN, (0.989, 0.981, 0.972) by 3D CNN. Comparable ASD were
achieved by the 3 segmentation methods: (0.355 mm, 0.55 mm, 0.503 mm) vs.
(0.352 mm, 0.327 mm, 0.479) vs. (0.356 mm, 0.374 mm, 0.488 mm). One minor
difference is the successful exclusion of airway by CNN in this honeycombing case.

Fig. 4. Three examples with differing degrees of fibrosis. Segmentations errors by the threshold
and anatomical model based method in the second row are highlighted with red arrows. (Color
figure online)
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4.2 Lobar Segmentation

The overall Dice score across 5 lobes is 0.959 ± 0.087 and Average surface distance is
0.873 ± 0.61 mm. More specific performance on each lobe is shown in Table 2.

Fig. 5. Example segmentations on emphysema, ground glass and honeycombing cases.

Table 2. Segmentation results of 5 different lobes by 3D DenseNet

Dice coefficient ASD (mm)

RUL 0.971 ± 0.078 0.699 ± 0.432
RML 0.923 ± 0.114 1.542 ± 1.164
RLL 0.970 ± 0.126 0.783 ± 0.372
LUL 0.972 ± 0.083 0.807 ± 0.594
LLL 0.962 ± 0.105 0.861 ± 0.753
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Figures 6, 7, and 8 show three lobar segmentation examples by sagittal plane: an
emphysema case with TLC, a fibrosis case with TLC and a scleroderma case with RV.
Detailed Dice score and ASD were shown in their captions respectively.

5 Discussion

The CNN based method achieved highly accurate lung segmentation based on Dice
score and Average surface distance. The 2D based CNN model has been successfully
applied to segment over 5000 chest CT scans in clinical practice. Our method showed
substantial advantages when large amounts of fibrosis are present, especially in
peripheral areas close to other soft tissue. Another strength of the CNN based method is
its ability to consistently exclude airway trees regardless of the disease patterns and
many other methods occasionally require post-processing. In comparison with P-HNN,
our work differs in terms of using a radiologist edited and approved reference seg-
mentation for training and testing, as well as the use of a simpler single channel
architecture (train from scratch) and no post-processing (such as 3D hole filling).

Using current hardware in clinical practice, the 2D slice based CNN slightly out-
performed the 3D volume based CNN. Although 3D based model is able to incorporate
more contextual information, this is actually not surprising considering following.
Firstly, the variation of slice spacing along the z direction is much larger than in the

Fig. 6. Lobar segmentation on an emphysema case with TLC. [LUL: 0.983 and 0.514 mm,
LLL: 0.981 and 0.570 mm, RUL: 0.981 and 0.561 mm, RML: 0.970 and 0.673 mm, RLL: 0.977
and 0.635 mm].
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x-y plane. One strategy would be to resample all the scans to the same resolution but
this is computationally expensive. Secondly, the number of training samples is also
much smaller when a 3D scan is used instead of individual 2D slices. As such, the 2D
model was built with more diverse dataset. Lastly, the image was down-sampled more
aggressively in the scenario of 3D CNN (512 to 128 vs. 512 to 256). This would
inevitably cause more information loss especially fine details near boundary and this is
also observed in the work by IBM research [14].

Using the initial lung segmentation from ResNet-101, the 3D DenseNet model
successfully segmented the five lobes correctly on pathological lungs. Conventional
fissure detection based methods often fail when fissures are incomplete or impacted by
lung abnormalities, such as emphysema, fibrosis. However, our 3D CNN model
demonstrated robustness in those challenging cases. One deficiency of our current
model is the assumption that five lobes are present which may not be true when a lobe
collapses, for example. In the future, we will include these highly abnormal cases in
training and also expand our evaluation to include public data sets.

Fig. 7. Lobar segmentation on a fibrosis case with TLC. [LUL: 0.978 and 0.427 mm, LLL:
0.960 and 0.538 mm, RUL: 0.975 and 0.496 mm, RML: 0.967 and 0.585 mm, RLL: 0.965 and
0.583 mm].
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6 Conclusion

We developed two fully convolutional neural network to segment lung and lobes
sequentially. The 2D ResNet-101 based segmentation architecture was successfully
applied to lung segmentation on chest CT without the need for any additional post-
processing. It achieved high accuracy even in the presence of challenging diffuse lung
diseases. The 3D DenseNet based network demonstrated competitive lobar segmen-
tation performance on various pathological lungs.
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