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Abstract. Accurate gross tumor volume (GTV) segmentation in esoph-
agus CT images is a critical task in computer aided diagnosis (CAD)
systems. However, because of the difficulties raised by the contrast simi-
larity between esophageal GTV and its neighboring tissues in CT scans,
this problem has been addressed weakly. In this paper, we present a 3D
end-to-end method based on a convolutional neural network (CNN) for
this purpose. We leverage design elements from DenseNet in a typical
U-shape. The proposed architecture consists of a contractile path and
an extending path that includes dense blocks for extracting contextual
features and retrieves the lost resolution respectively. Using dense blocks
leads to deep supervision, feature re-usability, and parameter reduction
while aiding the network to be more accurate. The proposed architecture
was trained and tested on a dataset containing 553 scans from 49 distinct
patients. The proposed network achieved a Dice value of 0.73±0.20, and
a 95% mean surface distance of 3.07 ± 1.86 mm for 85 test scans. The
experimental results indicate the effectiveness of the proposed method
for clinical diagnosis and treatment systems.
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1 Introduction

One of the most critical challenges in radiotherapy (RT) treatment planning
is a robust strategy for delineation of the gross tumor volume (GTV). Man-
ual segmentation of the GTV is time consuming, subject to error, and involves
valuable human resources. Hence, a great deal of effort has been devoted to
automating the process for different organs in CT images. Esophageal cancer is
the eighth common form of cancer worldwide with 456,000 new cases yearly, and
the sixth most fatal form of cancer [1]. RT is one of the treatment options, both in
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palliative and curative settings. Delineation of the GTV is not trivial due to short
and long term shape changes, and sometimes poor visibility on CT scans used
for RT treatment planning. Therefore, physicians use a combination of clinical
history, endoscopic findings, and other imaging modalities in conjunction with
CT imaging for manual delineation of the esophageal GTV. Obtaining this data
is hard, time consuming and expensive. Thus, developing an automatic and reli-
able esophageal GTV segmentation approach is desirable. However, automatic
esophageal GTV segmentation in CT scans has been addressed rarely, and is
much harder than segmenting the esophagus due to the difficulties raised by the
versatile shape, the poor contrast of the tumor with respect to adjacent tissues,
and the existence of foreign bodies in the esophageal lumen.

Lately, convolutional neural networks (CNNs) have attracted a great deal
of attention for medical image analysis [2]. However, very few CNN segmenta-
tion techniques have been proposed in the context of esophagus segmentation
and most of them are highly user interactive. Fechter et al. [3] proposed a fully
CNN (FCNN) for segmenting the esophagus in 3D CT images. Because of poor
visibility of the transition from the esophagus to the stomach, only the region
between the lower tip of the heart and the upper side of the stomach was consid-
ered. An active contour model and a random walker were used as post-processing
steps. The network achieved an average Dice value of 0.76 ± 0.11 for 20 test scans.
A semi-automatic two-stage FCNN for 2D esophagus segmentation was proposed
in [4], extracting an ROI in the first stage, and performing the segmentation in
the second stage. A Dice value of 0.72 ± 0.07 was reported for 30 test scans. Hao
et al. [5] used an FCNN as a pre-processing step for extracting a ROI in 2D
CT scans. Then a graph cut method for segmenting the tumor was applied. An
average Dice value of 0.75 ± 0.04 was reported for 4 test scans.

In this paper, we propose a 3D end-to-end CNN for esophageal tumor seg-
mentation. The proposed architecture, called 3D-DenseUnet, is related to fully
convolutional DenseNet (FC-DenseNet) [6,7], but uses 3D convolutions rather
than 2D. In this paper we leverage the idea of dense blocks, arranging them in a
typical U-shape. This improves the flow of information and gradients throughout
the network and strengthens feature propagation and feature re-usability. Dif-
ferent from [7], two techniques of bottleneck layers and feature compression are
used in order to increase the feature maps in a tractable fashion. Also, we adapt
the loss function particularly for our dataset. To the best of our knowledge this
is the first end-to-end method that addresses automatic 3D tumor segmentation
in esophageal CT scans of the whole chest region.

2 Proposed Network Architecture

The proposed DenseUnet, see Fig. 1, is a 3D network composed of a contractile
path to extract contextual features and an expanding path to recover the input
patch resolution. Each path consists of three main components: dense blocks,
down-sampling units, and up-sampling units. Since memory usage in 3D CNNs
is a challenging issue, training is performed using 3D patches rather than com-
plete scans. The input patch size is 47 × 47 × 47 voxels, i.e. encompassing the
GTV, while the output is probabilistic with size 33 × 33 × 33 voxels, concentric
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Fig. 1. The architecture of 3D-DenseUnet. The network contains dense blocks, down-
sampling units and up-sampling units. The gray dashed arrows between the contractile
path and the expansive path demonstrate the skip connections.

with the input. In the contractile path at each level, there is a dense block. The
two first contractile levels are followed by down-sampling units which reduce the
number of parameters and make the network capture more contextual informa-
tion. At the third level of the network, a dense block and an up-sampling unit are
stacked. Up-sampling layers and skip connections assist the network to retrieve
the lost resolution after the down-sampling units. At the final step, the network
is followed by one conv(3 × 3 × 3)-BN-ReLU (where BN is batch normalization
and ReLU a rectified linear unit), another convolutional layer with linear acti-
vation, and a soft-max layer in order to compute a probabilistic output which
can be classified as GTV and background.

Figure 2 illustrates the structure of the main components of the proposed
network. In each dense block, one conv(1 × 1 × 1)-BN-ReLU and one conv(3 ×
3 × 3)-BN-ReLU are stacked. Dense blocks with direct connectivity between
all the subsequent layers, improve the information flow between the layers and
make the network more accurate [6]. Also, due to its feature reusing capability,
dense blocks can perform deep supervision [7]. Unlike FC-Densenet, we employ
a feature reduction technique to avoid feature explosion. In each dense block
conv(1 × 1 × 1) layers are used as bottleneck layers, which reduce the number of
input feature maps and thus improve computational efficiency [6]. Also, in each
down-sampling unit there is one conv(1×1×1)-BN-ReLU which compresses the
feature maps with a coefficient θ. A down-sampling unit is followed by one 2 ×
2 × 2 max-pooling layer with a stride of 2×2×2. The up-sampling unit consists
of one conv(3 × 3 × 3)-BN-ReLU and one 3 × 3 × 3 transposed convolutional
layer with a stride of 2 × 2 × 2. It has been shown that using bottleneck layers
and compression aids in preventing overfitting [6].

Optimization is done by the Adam optimizer, with a constant learning rate of
10−4. As the GTV is quite small in comparison with the background, the data
is severely imbalanced. To tackle this issue [8], we employ the Dice similarity
coefficient as a loss function of the network similar to [9]:

DSCGTV =
2
∑N

i sigi
∑N

i s2i +
∑N

i g2i
, (1)
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Fig. 2. Main elements of the proposed network, from left to right: dense block, down-
sampling unit, and up-sampling unit. Here, deconv stands for transposed convolutional
layer. For each dense block, R is the number of dense sub-blocks which output is
connected to all subsequent sub-blocks.

where si ∈ S is the binary segmentation of the GTV predicted by the network
and gi ∈ G is the ground truth segmentation.

3 Materials and Implementation

3.1 Dataset

This study includes two different datasets of chest CT scans. The first dataset
was from 21 distinct patients who were treated for esophageal cancer between
2012 and 2014. For each patient, there were five repeat CT scans captured at
different time points. For three time points, there was one 3D CT scan, and for
two time points there were one 3D CT scan and one 4D CT scan, consisting of
10 breathing phases. The second dataset contains 29 distinct patients who were
treated for esophageal cancer in 2016 and 2017, with a single 3D CT scan per
patient. In both datasets, for each scan there was a corresponding esophageal
GTV segmentation, delineated by a single experienced physician. Each volume
contains 58-108 slices of 512 × 512 pixels and an average voxel size of 0.98 ×
0.98 × 3 mm3 which was resampled to a voxel size of 1 × 1 × 3 mm3.

3.2 Augmentation and Training Details

We implemented DenseUnet in Google’s Tensorflow. The experiments are car-
ried out using a GeForce GTX1080 Ti with 11 GB of GPU memory. For training
the network, the dataset was divided into three distinct sets: 30 patients (390
volumes) for training, 6 patients (78 volumes) for validation, and 13 patients
(85 volumes) for testing. In order to manage the GPU memory consumption
and parallelize the patch selection during the training process, the patches were
extracted randomly from the torso region, using a multi-threaded daemon pro-
cess on the CPU and were fed to the network on the GPU. At the testing time
the fully convolutional nature of the network is used, with zero padding to yield
equal output size. The batch size is 20 and the number of training iterations
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Table 1. Configuration details of the proposed network and DeepUnet122. DB refers to
dense block, R is the number of the sub-blocks for each DB, f1 and f2 denote the number
of feature maps for the bottleneck and conv(3× 3× 3) layers in each DB, respectively.
Each conv(1×1×1) layer produces 4f1 feature maps. m denotes the number of feature
maps, and θ is the compression coefficient.

Patch size DeepUnet122 DenseUnet188 DenseUnet122

R f1 f2 m R f1 f2 m R f1 f2 m

Input 47× 47× 47

DB + Down-sampling 22× 22× 22 3 4 16 8 3 4 4 13 3 16 8 12

DB + Down-sampling 11× 11× 11 4 4 32 16 7 4 4 41 4 32 16 38

DB 11× 11× 11 4 64 64 64 9 4 4 77 4 32 16 102

Up-sampling + DB 19× 19× 19 4 32 32 100 7 4 4 146 4 8 4 105

Up-sampling + DB 35× 35× 35 3 4 64 64 3 2 2 67 3 8 2 44

conv(3× 3× 3)-BN-ReLU 33× 33× 33 16 16 22

conv(3× 3× 3) + softmax 33× 33× 33 2 2 2

θ 0.5 1 0.5

# parameters (M) 1.1 0.7 1.2

is ∼10k. During every training iteration, the input patches were augmented by
white noise extracted from a Gaussian distribution with zero mean and a random
standard deviation between 0 and 5.

Table 1 summarizes the structure of the network. We used two different con-
figurations of the proposed network, where we vary the number of the sub-blocks
and also feature maps inside each sub-block.

4 Experiments and Results

Evaluation of the proposed method was done by the Dice Similarity Coefficient
(DSC), and mean surface distance (MSD). As in some cases the networks addi-
tionally segment areas far away from the GTV, we also report the MSD for the
95% best cases. In addition, precision and recall were reported.

The performance of DenseUnet with two configurations was compared with
U-Net [10] and a modified version of U-Net dubbed DeepUnet122. The number
of layers for the 3D U-Net network was 23 and the number of parameters 1.2M.
The DeepUnet122 architecture is similar to DenseUnet122 but without the loop
connections inside the dense blocks. In both U-Net and DeepUnet122, the Dice
loss function was used instead of cross-entropy [10], to enable a fair comparison.
Hence, the 3D U-Net in this paper is similar to V-Net [9].

Figure 3(a–d) depicts the DSC, MSD (mm), recall and precision for all net-
works on the test set. Figure 3(e) shows the cumulative frequency of the number
of the scans for different DSC values. As can be seen, for U-Net, 20 cases have
a DSC ≤ 0.5, for DeepUnet122 still 15 cases are ≤ 0.5, while this number is 10
and 8 for DenseUnet188 and DenseUnet122, respectively. A few cases have a low
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(a) DSC (b) MSD

(c) Recall (d) Precision

(e) Cumulative frequency of DSC

Fig. 3. Comparison of the networks. The red marks and red lines show the mean and
median, respectively. For (b), a few outliers larger than 30 are not shown.

DSC for all networks. A closer inspection revealed that in some cases there was
a feeding tube, surgical clips or air pockets in the esophageal lumen present in
the GTV. These cases were rarely seen in the training set. Figure 4 exemplifies
the segmentation results for two normal GTVs, a GTV with a large air pocket
in the lumen, and a GTV with a feeding tube present.

Table 2 yields a quantitative comparison of the segmentation performance
for the networks. As can be seen, DenseUnet188 has the best value of MSD but
DenseUnet122 has the best values in terms of DSC, 95% MSD and median MSD.
So, we propose DenseUnet122 as the final network.
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Fig. 4. Example results, from left to right: original images; U-Net; DeepUnet122;
DenseUnet188; DenseUnet122. The green contours depict the ground truth and the
red overlays the network output. The 3rd and 4th rows show an example of the GTV
containing an air cavity in the lumen and a feeding tube, respectively.

Table 2. Comparison of the different networks. The best results are shown in bold.
Here, med stands for median. The higher MSD for DenseUnet122 is related to some
false positives far away from the GTV, which is visible in the MSD.

U-Net[10] DeepUnet122 DenseUnet188 DenseUnet122

μ ± σ med μ ± σ med μ ± σ med μ ± σ med

DSC 0.57± 0.20 0.61 0.59± 017 0.65 0.67± 0.19 0.71 0.73± 0.20 0.78

MSD (mm) 6.21± 5.02 4.06 6.10± 5.90 4.00 4.97± 6.23 3.00 6.83± 19.21 2.36

95% MSD (mm) 5.32± 3.63 3.94 5.07± 2.98 3.88 3.55± 1.93 2.89 3.07± 1.86 2.31

Precision 0.91± 0.13 0.94 0.68± 0.17 0.70 0.83± 0.21 0.91 0.88± 0.15 0.94

Recall 0.44± 0.18 0.45 0.55± 0.18 0.60 0.57± 0.19 0.61 0.66± 0.21 0.73

5 Discussion and Conclusion

We proposed a 3D end-to-end fully convolutional CNN, called DenseUnet, for
the segmentation of the esophageal GTV in CT images. DenseUnet leverages
the ideas of dense blocks, in conjunction with down-sampling and up-sampling
paths. This enables the network to extract contextual features deeply while
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retrieving image resolution and alleviating the problem of feature map explosion.
We applied the proposed network to segment esophageal GTVs in 3D chest CT
scans for the first time.

We trained and tested the proposed method on 553 chest CT scans from 49
distinct patients and achieved a DSC value of 0.73 ± 0.20, and a 95% MSD of
3.07 ± 1.86 mm for the test scans, thereby outperforming U-Net. Eight (8/85)
scans had a DSC < 0.50, mostly caused by the presence of air cavities and foreign
bodies in the GTV, which was rarely seen in the training data.

To further enhance the robustness of the network we consider to increase the
training data set (more foreign bodies) and use more elaborate data augmenta-
tion. Dilated convolutions may decrease the network size, and consequently make
better use of the available training data as well. Combining with ROI-extraction
techniques may lower the number of false positives.

In conclusion, the proposed network obtained promising results for the chal-
lenging problem of esophageal cancer segmentation on chest CT scans, compar-
ing favorably to U-Net and earlier results found in the literature. The method
therefore may assist the clinical workflow, especially when considering an online
adaptive RT setting.

Acknowledgements. Denis Shamonin is acknowledged for the torso extraction code.
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10. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net:
learning dense volumetric segmentation from sparse annotation. In: Ourselin, S.,
Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS,
vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46723-8 49

https://doi.org/10.1007/978-3-319-46723-8_49
https://doi.org/10.1007/978-3-319-46723-8_49

	Esophageal Gross Tumor Volume Segmentation Using a 3D Convolutional Neural Network
	1 Introduction
	2 Proposed Network Architecture
	3 Materials and Implementation
	3.1 Dataset
	3.2 Augmentation and Training Details

	4 Experiments and Results
	5 Discussion and Conclusion
	References




