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Abstract. Locating vessels during surgery is critical for avoiding inad-
vertent damage, yet vasculature can be difficult to identify. Video motion
magnification can potentially highlight vessels by exaggerating subtle
motion embedded within the video to become perceivable to the sur-
geon. In this paper, we explore a physiological model of artery dis-
tension to extend motion magnification to incorporate higher orders
of motion, leveraging the difference in acceleration over time (jerk) in
pulsatile motion to highlight the vascular pulse wave. Our method is
compared to first and second order motion based Eulerian video magni-
fication algorithms. Using data from a surgical video retrieved during a
robotic prostatectomy, we show that our method can accentuate cardio-
physiological features and produce a more succinct and clearer video for
motion magnification, with more similarities in areas without motion to
the source video at large magnifications. We validate the approach with
a Structure Similarity (SSIM) and Peak Signal to Noise Ratio (PSNR)
assessment of three videos at an increasing working distance, using three
different levels of optical magnification. Spatio-temporal cross sections
are presented to show the effectiveness of our proposal and video sam-
ples are provided to demonstrates qualitatively our results.
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1 Introduction

One of the most common surgical complications is due to inadvertent damage
to blood vessels. Avoiding vascular structures is particularly challenging in min-
imally invasive surgery (MIS) and robotic MIS (RMIS) where the tactile senses
are inhibited and cannot be used to detect pulsatile motion. Vessels can be
detected by using interventional imaging modalities like fluorescence or ultra-
sound (US) but these do not always produce a sufficient signal, or are difficult
to use in practice [1]. Using video information directly is appealing because it is
inherently available, but processing is required to reveal any vessel information
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Fig. 1. (Left): The vessel distension-displacement from the pulse wave, with the
higher order derivatives along with annotation of the corresponding cardio-physiological
stages. Down sampled to 30 data points to reflect endoscope frame rate acquisition.
(1-D Virtual Model of arterial behaviour [2]) (Right): Endoscopic video image stack.
The blue box surrounds an artery with no perceivable motion, shown by the vertical
white line in the cross section

hidden within the video and is not apparent to the surgeon, as can be seen in
the right image of Fig. 1.

The cardiovascular system creates a pressure wave that propagates through
the entire body and causes an equivalent distension-displacement profile in
the arteries and veins [3]. This periodic motion has intricate characteristics,
shown in Fig. 1 (left), that can be highlighted by differentiating the distension-
displacement signal. The second order derivative outlines where the systolic
uptake is located, whilst the third derivative highlights the end diastolic phase
and the dicrotic notch. This information can be present as spatio-temporal vari-
ation between image frames and amplified using Eulerian video magnification
(EVM). EVM could be applied to endoscopic video for vessel localisation by
using an adaptation of an EVM algorithm and showing the output video directly
to the surgeon [4]. Similarly, EVM can aid vessel segmentation for registration
and overlay of pre-operative data [5], as existing linear based forms of the raw
magnified video can be abstract and noisy to use directly within a dynamic
scene. Magnifying the underlying video motion can exacerbate unwanted arti-
facts and unsought motions, and in this case regarding surgical video, of those
which are not the blood vessels but due to respiration, endoscope motion or
other physiological movement within the scene.

In this paper, we propose to utilise features that are apparent in the car-
diac pulse wave, particularly the non-linear motion components that are empha-
sised by the third order of displacement, known as jerk (Green plot Fig. 1, left).
We devise a custom temporal filter and use an existing technique for spatial
decomposition of complex steerable pyramids [6]. The result is a more coherent
magnified video compared to existing lower order of motion approaches [7,8],
as the high magnitudes of jerk are prominently exclusive to the pulse wave in
the surgical scene, as our method avoids amplification of residual motions due to
respiration or other periodic scene activities. Quantitative results are difficult for
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such approaches but we report a comparison to previous work using Structure
Similarity [9] and Peak Signal to Noise Ratio (PSNR) of three robotic assisted
surgical videos at separate optical zoom. We provide a qualitative example of how
our method achieves isolation of two cardio-physiological features over existing
methods. A supplementary video of the magnifications is provided that further
illustrates the results.

2 Methods

Building on previous work in video motion magnification [7,8,10] we set out
to highlight the third order motion characteristics created by the cardiac cycle.
In an Eulerian frame of reference, the input image signal function is taken as
I(x, t) at position x (x = (x, y)) and at time t [10]. With the linear magnification
methods, δ(t) is taken as a displacement function with respect to time, giving
the expression I(x, t) = f(x + δ(t)) and is equivalent to the first-order term in
the Taylor expansion:

I(x, t) ≈ f(x) + δ(t)
∂f(x)

∂x
(1)

This Taylor series expansion appropriation can be continued into higher orders
of motion, as shown in [8]. Taking it to the third order, where Î(x, t) is the
magnified pixel at point x and time t in the video.

Î(x, t) ≈ f(x)+(1+β)δ(t)
δf(x)

δx
+(1+β)2δ(t)2

1
2

δ2f(x)
δ2x

+(1+β)3δ(t)3
1
6

δ3f(x)
δ3

(2)
In a similar vein to [8], we equate a component of the expansion to an order of
motion and isolate these by subtraction of the lower orders

I(x, t) − I(x, t)non−linear(2ndorder) − I(x, t)linear ≈ (1 + β)3δ(t)3
1
6

δ3f(x)
δ3x

(3)

assuming (1+β)3= α, α > 0.

D(x, t) = δ(t)3
1
6

δ3f(x)
δ3x

(4)

Înon−linear(3ndorder)(x, t) = I(x, t) + αD(x, t) (5)

This produces an approximation for for the input signal and a term that can be
attenuated in order to present an augmented reality (AR) view of the original
video.

2.1 Temporal Filtering

As jerk is the third temporal derivative of the signal Î(x, t), a filter has to be
derived to reflect this. To achieve acceleration magnification, the Difference of
Gaussian (DoG) filter was used [8]. This allowed for a temporal bandpass to be
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assigned, by subtracting two Gaussian filters, using σ = r
4ω

√
2

[11] to calculate
the standard deviations of them both, where r is the frame rate of the video and
ω is the frequency under investigation. Taking the derivative of the second order
DoG we create an approximation of the third order, which follows Hermitian
polynominals [12]. Due to the linearity of the operators, the relationship between
the the jerk in the signal and the third order DoG as:

∂3I(x, t)
∂t3

⊗ Gσ(t) = I(x, t) ⊗ ∂3Gσ(t)
∂t3

(6)

2.2 Phase-Based Magnification

In the classical EVM approach, the intensity change over time is used in a pixel-
wise manner [10] where a second order IIR filter detects the intensity change
caused by the human pulse. An extension of this uses the difference in phase
w.r.t spatial frequency [7] for linear motion, as subtle difference in phase can
be detected between frames where minute motion is present. Recently, phase-
based acceleration magnification has been proposed [8]. It is this methodology
we utilise and amend for jerk magnification. By describing motion as phase shift,
a decomposition of the signal f(x) with displacement δ(t) at time t, the sum of
all frequencies (ω) can be shown as:

f(x + δ(t)) =
∞∑

ω=−∞
Aωeiω(x+δ(t)) (7)

where the global phase for frequency ω for displacement δ(t) is φω = ω(x+δ(t)).
It has been shown that spatially localised phase information of a series of

image over time is related to local motion [13] and has been leveraged for linear
magnification [7]. This is performed by using complex steerable pyramids [14]
to separate the image signal into multi-frequency bands and orientations. These
pyramids contain a set of filters Ψωs,θ at multiple scales, ωs and orientations θ.
The local phase information of a single 2D image I(x) is

(I(x)) ⊗ Ψωs,θ(x) = Aω,θ(x)eiφωs,θ(x) (8)

where Aω,θ(x) is the amplitude at frequency ω and orientation θ, and where φωs,θ

is the corresponding phase at scale (pyramid level) ωs. The phase information
is extracted (φωs,θ(x, t)) at a given frequency ω, orientation θ and frame t. The
jerk constituent part of the motion is filtered out with our third order Gaussian
filter and can then be magnified and reinstated into the video (φ̂ω,θ(x, t)) to
accentuate the desired state changes in the cardiac cycle, such as the dicrotic
notch and end diastolic point, shown in Fig. 1 (left).

Dσ(φω,θ(x, t)) = φω,θ(x, t) ⊗ ∂3Gσ(t)
∂t3

(9)

φ̂ω,θ(x, t) = φω,θ(x, t) + αDσφω,θ(x, t) (10)

Phase unwrapping is applied as with the acceleration methodology in order to
create the full composite signal [8,15].
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3 Results

To demonstrate the proposed approach, endoscopic video was captured from
robotic prostatectomy using the da Vinci surgical system (Intuitive Surgical Inc,
CA), where a partially occluded obturator artery could be seen. Despite being
identified by the surgical team the vessel produced little perceivable motion in
the video. This footage was captured at 1080p resolution at 30 Hz. For process-
ing ease, the video was cropped to a third of the original width, which contained
the motion of interest, yet still retains the spatial resolution of the endoscope.
The video was motion magnified using the phase-based complex steerable pyra-
mid technique described in [7] for first order motion and the video acceleration
magnification described in [8] offline for comparison. Our method appended the
video acceleration magnification method. All processes use a four level pyramid
and half octave pyramid type. For the temporal processing, a bandpass was set
at 1 Hz +/− 0.1 to account for a pulse around 54 to 66 bpm. From the patient’s
ECG reading, their pulse was stable at 60 bpm during video acquisition. This
was done at three magnification factors (x2, x5, x10). Spatio-temporal slices were
then taken of a site along the obturator artery for visual comparison of each tem-
poral filter type. For a quantitative comparison, the Peak Noise to Signal Ratio
(PNSR) and Structural Similarity (SSIM) index [9] was calculated on a hundred
frame sample, comparing the magnified videos to their original equivalent frame.

Fig. 2. Volumetric image stacks of an endoscopic scene under different types of mag-
nification.

Figure 2 shows an apprehensible overview of our video magnification investi-
gation. The pulse from the external iliac artery can be seen in the right corner and
the obturator artery on the front face. Large distortion and blur can be observed
on the linear magnification example, particularly in the front right corner, where
as this is not present on the non-linear example, as change in velocity is exag-
gerated, where as any velocity is exaggerated in the linear case. Figure 3 displays
a magnification comparison of spatio-temporal slices taken from three different
for mentioned magnification methods. E and G in this figure, demonstrates the
improvement in pulse wave motion granularity using jerk has in temporal pro-
cessing, compared to the lower orders. The magenta in E shows a periodic saw
wave, with no discerning features relating to the underlying pulse wave signal.
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Fig. 3. Motion magnification of the obturator artery (x10). (a) Unmagnified spatio-
temporal slice (STS); (b) Linear magnification [7]; (c) Acceleration magnification [8];
(d) Jerk magnification (our proposal); (e),(g) Comparative STS, blue box from (d)
(jerk) in green, with (b) in magenta in (e) and (c) in magenta in (g); (f) Sample site
(zoomed); (h) Overview of the surgical scene.

Fig. 4. 1D distension-displacement pulse wave signal amplification, using virtual
data [2]. The jerk magnification shown in green creates two distinct peaks that is
not present in the other two methods of lower order.

The magenta in G that depicts the use of acceleration shows a more bipolar tri-
angle wave. The green in both E and G shows a consistent periodic twin peak,
with the second being more diminished, which suggests that our hypothesis of a
jerk temporal filter being able to detect the dicrotic notch as correct and com-
parable to our model analysis shown in Fig. 4. Table 1 shows a comparison of a
surgical scene at three separate working distances. This was arranged to dimin-
ish the spatial resolution with the same objective in the endoscope. All three
aforementioned magnification algorithms were used on each at three different
motion magnification (α) factors (x2, x5, x10).

As a comparative metric, SSIM and PSNR are used as a quantitative metric,
with PSNR being based on mathematical model and SSIM taking into account
characteristics of the human visual system [9]. SSIM and PSNR allow for objec-
tive comparisons of a processed image to a reference source, whilst it is expected
that a magnified video to be altered, the residual noise generation by the process
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Table 1. Results from SSIM analysis and PSNR for our surgical videos at three levels
of magnification across the different temporal processing approaches.

α Assessment Scene level 1 Scene level 2 Scene level 3

Linear Acc. Jerk Linear Acc. Jerk Linear Acc. Jerk

x2 SSIM 34.95 34.7 35.65 33.87 34.33 35.31 34.41 35.02 35.31

PSNR 0.94 0.95 0.96 0.93 0.94 0.96 0.95 0.96 0.96

x5 SSIM 30.6 31.5 33.18 28.98 31.05 33 30.32 31.88 33

PSNR 0.88 0.9 0.93 0.85 0.89 0.92 0.9 0.92 0.92

x10 SSIM 27.76 28.94 30.56 25.92 28.41 30.43 27.75 29.36 30.43

PSNR 0.82 0.85 0.88 0.78 0.83 0.87 0.85 0.86 0.88

can be seen by these proposed methods. SSIM is measured in decibels (db), where
the higher the number the better the quality is. PSNR is a percentile reading,
with 1 being the best possible correspondence to the reference frame. For the
all surgical scene, our proposed temporal process of using jerk out performs the
other low order motion magnification methods across all magnifications for SSIM
and equals or outperforms the acceleration technique, particularly at α = 10.

4 Conclusion

We have demonstrated that the use of higher order motion magnification can
bring out subtle motion features that are exclusive to the pulse wave in arter-
ies. This limits the amplification of residual signals present in surgical scenes.
Our method particularly relies on the definitive cardiovascular signature char-
acterized by the twin peaks of the end diastolic point and the dicrotic notch.
Additionally, we have shown objective evidence that less noise is generated when
used within laparoscopic surgery compared to other magnification technique,
however, a wider sample and case specific examples would be needed to verify
this claim. Further work will look at a real-time implementation of this approach
as well as methods of both ground truth validation and subjective comparison
within a clinical setting. Practical clinical use cases are also needed to verify the
validity of using such techniques in practice and to identify the bottlenecks to
translation.
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