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Abstract. The current standard photoacoustic (PA) technology is
based on heavy, expensive and hazardous laser system for excitation
of a tissue sample. As an alternative, light emitting diode (LED) offers
safe, compact and inexpensive light source. However, the PA images of
an LED-based system significantly suffer from low signal-to-noise-ratio
due to limited LED-power. With an aim to improve the quality of PA
images, in this work we propose to use deep convolutional neural net-
works that is built upon a previous state-of-the-art image enhancement
approach. The key contribution is to improve the optimization of the
network by guiding its feature extraction at different layers of the archi-
tecture. In addition to using a high quality target image at the output
of the network, multiple target images with intermediate qualities are
employed at in-betweens layers of the architecture to guide the feature
extraction. We perform an end-to-end training of the network using a
set of 4,536 low quality PA images from 24 experiments. On the test
set from 15 experiments, we achieve a mean peak signal-to-noise ratio of
34.5 dB and a mean structural similarity index of 0.86 with a gain in the
frame rate of 6 times compared to the conventional approach.
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1 Introduction

Photoacoustic (PA) is an emerging interventional imaging modality based on
the photoacoustic phenomenon of generation of acoustic waves following light
absorption in a soft-tissue sample. The primary applications of the PA technique
include imaging of tissue chromophore (e.g. blood vessel) and exogenous contrast
agents [3,6]. The standard work-flow of PA imaging starts with excitation of a
sample using an intense short light pulse, followed by local thermo-elastic expan-
sion due to sudden temperature rise. As a consequence of thermal expansion,
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wideband acoustic signals are generated, and an ultrasound receiver is then used
to collect the signal, which is usually known as PA signal.

For sources of PA imaging, the commercially available systems usually prefer
Nd:YAG, Ti:Sapphire or dye laser [1], and they are capable to generate high
energy laser pulse at biologically relevant wavelengths. Due to the high intense
light source, a laser enclosure is recommended to install in the system to prevent
the operator from incident irradiation. In addition to expensive and bulky laser
system, such enclosure makes the system more cumbersome and does not allow
the operator directly contacting with the sample [3].

Light emitting diode (LED) is a potential alternative that offers compact,
safe and inexpensive illumination system in contrast to the conventional laser
source. However, due to the limited output power, the PA signal of an LED-based
system significantly suffers from low signal-to-noise-ratio (SNR) which in turn
degrades the quality of the reconstructed PA images. To improve the SNR with
LED-based system, the currently available technology acquires multiple (e.g.
a few thousands) frames for the same sample and performs an averaging over
them. In fact, the quality of a PA image is proportional to the number of frames
used for averaging; an example is shown in Fig. 1(a) for two phantom PA images.
Though a simple averaging over thousand of frames improves the image quality,
it reduces the effective frame rate of PA images and more importantly, it often
makes the PA images prone to motion artifact in in vivo applications (marked by
circles in Fig. 1(b)). Therefore, it is recommended to use a less number of frames
for averaging and perform standard signal processing to improve the SNR. The
signal processing approach could be based on adaptive denoising, empirical mode
decomposition or wavelet transform [2,3].

Fig. 1. Effect of averaging number (400 vs. 11000) on (a) a phantom and (b) an in vivo
(proper digital arteries of fingers) examples. For the in vivo example, higher number
of averaging frames introduces motion artifact (marked by circles).

In recent years, deep neural networks based approaches have shown promising
performance in various applications compared to the previous state-of-the-art
signal and image processing techniques. In addition to image classification, deep
networks have been successfully used for image denoising [9] and image resolution
improvement [7,8] that closely fit to our problem of image quality improvement.

Inspired from the success of neural networks, in this work, we present a deep
convolutional neural networks (CNN)-based approach to improve the quality of
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reconstructed PA images. Our architecture is built on a previous state-of-the-art
image enhancement approach [8] that uses a series of dense convolutional layers
to improve the quality of a 2D image. In addition, we propose to improve the
optimization of the network by guiding its feature extraction using a sequence
of target images. The target images are maintained to have an increasing order
of image quality, and they are employed at different layers of the architecture to
guide the feature extraction for an improved prediction of the image quality.

2 Methods

2.1 Architecture

Figure 2 shows our CNN-based architecture to improve the quality of recon-
structed PA images; it takes a low quality PA image as input and at the end
it generates an improved version of the given PA image. For convenience, in
Fig. 2 we indicate the number of feature maps (or channels) for each convolu-
tional layer as ‘xx ’ in ‘Conv xx ’. In addition, the successively increasing feature

Fig. 2. The proposed architecture to improve the quality of a PA image. The input
image is processed through three image enhancement networks, where each unit consists
of six dense blocks. Furthermore, each dense block includes two dense 3×3 convolutional
layers followed by rectified linear units. To generate an output image for each image
enhancement block, all the features from the dense blocks are concatenated. Finally, a
sequence of three target images with an increasing order of image quality are used to
compute the mean square losses for three image enhancement blocks and these losses
contribute equally to the total loss function.
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maps are mentioned in the figure. The proposed architecture consists of three
sequentially connected image enhancement blocks; for each block we use the
architecture in [8] that was primarily proposed to improve the resolution of 2D
images. Note that unlike [8] we do not use any upsamling layers in the network
since both input and target images are of the same sizes (224×224 pixels) in our
case. Following the architecture pattern in [8], we use six dense blocks to build
each image enhancement network. Furthermore, each dense block includes two
densely connected 3 × 3 convolutional layers followed by rectified linear units
(ReLU). In principle, a dense convoluional layer uses all the features from its
previous layers as inputs, as a result, it allows feature propagation more effec-
tively and eliminates the vanishing gradient problem [5]. Note that instead of
exactly using the same hyper-parameters (i.e. number of dense blocks and num-
ber of convoluional layers in each dense block) suggested in [8], we utilize the
validation set to determine them (more about the validation set in Sect. 3.3
(Materials)). To produce an output image for each image enhancement block,
all the generated features from the dense blocks are concatenated as shown in
Fig. 2, and finally a convolution with one feature map is performed.

2.2 Loss Function

As mentioned earlier, the key contribution in this work is to guide the feature
extraction of the network using a target sequence for an improved optimization.
The sequence consists of three target images with an increasing order of image
quality. As shown in Fig. 2, these three target images are sequentially fed to
successive deeper layers. We compute the mean square losses corresponding to
three target images, and subsequently we optimize the total loss function that is
the average of these three individual losses. A detail description of generating a
sequence of target images with an increasing order of image quality is provided
in Sect. 3.4 (Training).

3 Experiments and Materials

3.1 LED Excitation Source

Our LED-based PA excitation source consisted of two LED matrices attached
on both sides of the ultrasound probe. Each LED matrix included 144 LEDs
arranged in four rows. The pulse repetition frequency of the LED was 1 kHz,
i.e., the naive frame rate was 1 kHz. A synchronizer was employed to synchronize
between LED excitation and PA signal reception.

3.2 Data Acquisition

We performed an experimental study using our LED-based PA system on 48
samples; 45 from blood mimicking phantoms and the rest 3 from volunteer fin-
gers. For each sample, we acquired pre-beamformed PA signals for 11 s that led
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to a collection of 11,000 frames of PA signals. Note that only for the phantom
experiments, we could manage minimal vibration during the scanning period.
After acquisition of the raw PA signals, an arithmetic averaging was performed
over a number of frames (say, N). Then delay-and-sum method was used for
beam-forming, followed by envelope detection to reconstruct the PA intensity
image PAN , where the subscript N indicates the number of frames used in aver-
aging the PA signals before reconstruction.

3.3 Materials

To train, validate and test the proposed approach, we divide all of our experi-
mentally acquired data into three groups. As mentioned earlier, for in vivo exper-
iments, we could not be able to manage a steady condition during the scanning
period. Therefore, the reconstructed images with high averaging frame number
are affected by the motion artifacts (examples in Fig. 1(b)), subsequently, they
are not used in any quantitative analysis. The training and validation sets con-
sist of only of phantom data from 24 phantoms and 6 phantoms, respectively.
And, the test set consists of 15 phantoms and 3 sets of in vivo data, where the
latter one is used only for qualitative evaluation.

3.4 Training

To generate low quality input and high quality target PA images for the training,
we exploit the positive effect of the averaging frame number (N) on the recon-
structed image quality. For low quality inputs, we choose lower values of N in
range of 200–4000, with a step of 200. For each chosen value of N , we divide the
large set of 11,000 frames into a number of subsets, where each subset consists
of N frames of PA signals. Next, within each subset of N frames, the raw PA
signals are averaged, followed by reconstruction to obtain one PA image. For
an example of N = 200, therefore, we obtain a total of 55 PA images from each
sample. Calculating in the same way for all N in 200–4000 with a step of 200,
we obtain a total of 189 input PA images from each experiment, subsequently
4,536 input training images from 24 experiments.

In contrast, for the target sequence, we use successive higher values of N
to generate three target images with an increasing order of image quality. The
values of N are, therefore, chosen from 5000–7000, 8000–10000, 11000 to generate
three target images with an increasing order of image quality, where the latter
one indicates the possible highest quality. Since we need higher values of N for
the target images, it leads to less number of target images than input images.
Therefore, it may be possible to have one target sequence correspond to more
than one input images. We also perform random cropping of input (similarly for
output too) images for a data augmentation in training. For the validation and
test sets, we also generate input images using N in range of 200–4000 with a
step of 200. However, intermediate (for N in 5000–7000 and 8000–10000) target
images are not required in those cases, because we use only the final output of
our network to compare with the highest quality target image PA11000.
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4 Evaluation and Results

4.1 Peak Signal-to-Noise-Ratio and Structural Similarity Index

For a quantitative evaluation of the proposed approach based on the test set, we
use peak signal-to-noise-ratio (PSNR) and structural similarity index (SSIM) as
evaluation indices [4] that compare the output of our network with the highest
quality target image PA11000. In addition, we compare our results with those
from simple averaging and densenet [8]-based techniques. In the simple averaging
technique, we do not perform any further processing on the PA images that are
reconstructed from the already averaged PA signal. In contrast, for the densenet-
based technique, we process the PA images using their reported architecture that

Fig. 3. Evaluation of the proposed approach. (a–b) Comparison of mean PSNR and
SSIM of our method with those from simple averaging and densenet-based tech-
niques [8] for different values of averaging frame numbers. (c–d) Effect of the imaging
depth on the image quality. A qualitative comparison of our method with densenet-
based technique for (e–h) an in vivo and (i–l) a phantom examples.
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is in fact the same one shown in Fig. 2 but without using any intermediate target
images during training. Note that the comparison is carried out for all values of
averaging frame numbers (N) in range of 200–4000 (with a step of 200) that are
used for generating low quality input images in the test set.

Figures 3(a–b) demonstrate a comparison of mean PSNR and mean SSIM
(computed from 15 different experiments) of our method with those from the
simple averaging and densenet-based methods for different values of N . We can
notice improvement for our technique compared to two comparing methods for
all values of N . In addition, we can observe comparatively higher drop in accu-
racy at N < 1200 for both of our and densenet-based methods than that at
N > 1200. A rank-sum test is performed to measure the statistical improve-
ment of our method with respect to two comparing methods. And we obtain
p-values< 0.02 for all values of N both for PSNR and SSIM.

Another way to interpret the improvement is to compare the number of
averaging frames needed to achieve a same image quality. For example, for a
fixed PSNR of 34.5 dB, we achieve a gain in the frame rate of 6 times compared
to the simple averaging technique (N = 630 vs. 4000 at dotted line in Fig. 3(a)).
The corresponding mean SSIM for our method at N = 630 is 0.86.

4.2 Performance at Different Depths

We also investigate the performance of the proposed approach with respect
to possible variations of imaging depths of targeted objects. For this purpose,
we use three PA images (left column in Fig. 3(c)) of a same phantom, gener-
ated using three different values of N of 200, 800 and 1400. In addition, we
present the results of our approach in the right column. To analyze the effect of
imaging depth on the image quality, we select three region of interests (ROIs)
around three point targets at different depths (shown in the figure). A qualitative
comparison among the performance at those three ROIs indicates a successive
reduced accuracy of the proposed technique for lower values of N while moving
from a lower to higher depth. A corresponding quantitative analysis is presented
in Fig. 3(d) that shows a comparison among the PSNRs of those ROIs for dif-
ferent values of N , where we can observe dependency of the performance of our
method on imaging depth.

4.3 Qualitative Analysis

Figures 3(e–l) show a qualitative comparison between the proposed and densenet-
based [8] methods for an in vivo and a phantom examples. As mentioned earlier,
an averaging over a higher number of frames for the in vivo example (proper
digital arteries of fingers) in our study leads to motion artifact in PA images.
Taking the PA image with less number of averaging frames as input, our proposed
method is able to improve its quality and subsequently suppresses the noise
better, compared to the densenet-based technique (marked by circle in Fig. 3(h)).
For the phantom example in Figs. 3(i–l), we can observe satisfactory performance
for both of our and densenet-based methods. Though we train the network using



166 E. M. A. Anas et al.

only the cross-sectional images of blood vessel mimicking phantoms, we can
notice its satisfactory performance on unseen ‘along the axis’ image.

4.4 Computation Time

The computation time obtained using NVIDIA GeForce GTX 1080 Ti is 0.05
sec for both of our and densenet-based methods.

5 Discussion and Conclusion

In this work, we have presented a real-time approach to improve the imaging
quality of LED-based PA imaging technique. The key contribution in our CNN-
based method is to guide its feature extraction by using a sequence of target
images employed at successive layers in the architecture. We have trained the
network using a set of 4,536 low quality PA images from 24 phantom exper-
iments. On the test set from 15 experiments, we could achieve a gain in the
frame rate of 6 times compared to the conventional averaging approach, with a
mean PSNR of 34.5 dB and a mean SSIM of 0.86. In addition, we have demon-
strated a statistical significant improvement of the proposed method compared
to the state-of-the-art CNN-based image enhancement approach [8] that in turn
indicates the effectiveness of our contribution of guiding the feature extraction
during training.

Though we have trained the network using data from blood mimicking phan-
toms, we have not only observed its satisfactory performance in in vivo example
but also noticed elimination of motion artifacts resulting from a high number
of averaging frames (Fig. 3(g)). In addition, we have demonstrated its promis-
ing performance on unseen imaging planes that had not been exposed during
training (Fig. 3(k)).

We have observed a comparatively reduced accuracy of the proposed app-
roach (other methods too) at lower averaging frame numbers (N < 1200). We
can attribute its main reason to limitation of these methods at higher imaging
depth (Fig. 3(d)). In fact, the PA signal from a higher depth is affected by more
noise due to increased optical scattering. As a result, we need higher averaging
frame numbers to achieve the desired quality.

Future works include quantitative validation of the proposed approach with
in vivo examples. In addition to blood vessels, we aim to include other optically
interested soft-tissue and exogenous contrast agents within the imaging targets.
In conclusion, we have demonstrated the potential of the proposed technique
to be included in a real-time LED-based PA imaging work-flow to improve the
image quality as well as to achieve a gain in the imaging speed.
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