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Abstract. This paper proposes a weakly-supervised representation
learning framework for probe-based confocal laser endomicroscopy
(pCLE). Unlike previous frame-based and mosaic-based methods, the
proposed framework adopts deep convolutional neural networks and inte-
grates frame-based feature learning, global diagnosis prediction and local
tumor detection into a unified end-to-end model. The latent objects in
pCLE mosaics are inferred via semantic label propagation and the deep
convolutional neural networks are trained with a composite loss func-
tion. Experiments on 700 pCLE samples demonstrate that the proposed
method trained with only global supervisions is able to achieve higher
accuracy on global and local diagnosis prediction.
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1 Introduction

Probe-based confocal laser endomicroscopy (pCLE) is a novel optical biopsy
technique for real-time tissue characterization in vivo. Flexible coherent fiber-
bundle probes, typically of the size of 1.0 mm in outer diameter, integrating con-
focal optics in the proximal end, are used to provide fluorescence imaging of the
biological tissue. Furthermore, these miniaturized probes can be integrated into
standard video endoscopes, making pCLE a popular choice for minimally inva-
sive endoscopic procedures. Current applications include breast, gastro-intestinal
and lung diseases.

Although pCLE enables the acquisition of in-vivo microscopic images that
resemble the gold-standard (H&E) stained histology images, many challenges
associated with disease characterization still remain. A major challenge being
that the field of view (FOV), limited by the size of the fiber bundle, is typically
less than 1 mm2. A high resolution Cellvizio probe for example offers a lateral
resolution of 1.4µm but a FOV of just 240µm. With such a small FOV, par-
ticularly when compared to histology slides, means that only a small number
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of morphological features can be visualized in each image. Furthermore, conven-
tionally histology images are examined by trained pathologists, which is different
from the surgical setting where live pCLE images need to be assessed in real-time
by surgeons who may have limited training on histopathology.

For these reasons, there has been extensive interests in developing computer-
aided diagnosis for automated pCLE image classification in the recent years [1–
5]. These methods can be broadly categorized into frame-based methods [2,3,5]
and mosaic-based methods [1,4]. As shown in Fig. 1(a), the frame-based meth-
ods adopt the visual information of single frame based on Dense-SIFT [2], deep
convolutional neural networks (CNN) [5] or transfer learning from histopatholog-
ical images [3]. Although these methods provide diagnosis result for each pCLE
frame, the FoV of each frame is relatively small leading to low confidence for
final diagnosis. Moreover, the frame-based methods require massive annotations
of training data which is often expensive and time-consuming. On the other hand,
the mosaic-based methods [1,4], as shown in Fig. 1(b), help to increase the effec-
tive FoV along with direction of probe motion by stitching consecutive image
frames. Even with this enlarged FoV, the pCLE diagnostic accuracy depends on
the quality of reconstructed mosaics, which in turn is affected by several fac-
tors including the speed by which the operator can translate the probe across
the tissue, as well as probe-tissue contact and tissue deformation. In addition,
mosaic-based methods can only provide a global diagnosis for the large pCLE
mosaic but not for the specific regions of the mosaic (e.g. for the regions that
correspond to neoplastic tissue as shown in Fig. 1(c)). This would affect the
overall diagnostic performance. To provide an objective support for pCLE diag-
nosis, it is critical to develop a learning framework that can provide both global
diagnosis as well as local tumour detection for pCLE images.

Fig. 1. Illustration of different types of methods: (a) Frame-based methods (e.g.
MVMME [3] and Patch-CNN [5]); (b) Mosaic-based methods (e.g. DenseSIFT [6] and
UMGM [4]; (c) The proposed method.

Given only the global diagnosis of the pCLE data1, the task of local tumour
detection is related to the weakly-supervised object detection (WSOD) that
discovers the latent region of interests (ROIs) by only image-level labels. Unlike
1 pCLE videos refer to a set of consecutive frames of pCLE images; pCLE mosaics refer

to the image with large field of view which are generated by stitching the frames.
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the WSOD tasks in general computer vision, the global labels of medical data
may not cover all latent objects in the image. As shown in Fig. 1(c), the final
diagnosis is ‘malignant’, which is determined by a small portion of the local
regions while the rest are ‘normal’ tissues that are not included in the global
label. In this paper, this observation is called ‘semantic exclusivity’ which leads to
another critical task of discriminative feature learning for pCLE data to discover
all latent objects in the pCLE video.

To this end, a weakly-supervised feature learning framework (WSFL) is pro-
posed. The architecture of WSFL is illustrated in Fig. 2. Given a set of consecu-
tive pCLE frames, WSFL firstly passes the frames through several convolutional
layers which are then processed by fully connected layers to output fixed-size
frame-based features. These frame-based features are branched into two different
streams: one jointly learns the global-image representation and global diagnosis
and the other further learns the frame-based annotations by label propagation.
Only global diagnosis labels are used as supervisions to train the two streams
based on composite loss. We validate the performance of the representation on
dataset with 45 patient cases consisting of 700 pCLE videos. The experiments
demonstrate that the proposed method is effective for both global diagnosis and
local tumour detection compared to frame-based methods [3,5] and mosaic-based
methods [1,4].

Fig. 2. The main framework of the proposed method.

2 Methodology

2.1 Frame-Based Feature Representation

In this paper, the pCLE data are denoted by {Xi}, i = 1, . . . , n where n is
the number of pCLE videos. Each data sample Xi is composed with mi frames
{Xi,j} where j = 1, . . . ,mi. The goal of this paper is to learn global prediction
function Hg(·) for global diagnosis Y g

i and local prediction function H l(·) for
local labels Y l

i,j only with the global supervision. Given a pCLE video Xi =
{Xi,j}, j = 1, . . . ,mi, we firstly extract the frame-based features by convolutional
neural networks. As shown in Fig. 2, the j-th pCLE frame Xi,j is fed into the
convolutional layers and then transformed into a D-dimensional representation
f l
i,j .
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2.2 Local Label Classification

Unlike the frame-based approach, the frame-wise labels are not available during
the training procedure in our work. Therefore, one challenge of the proposed
method is to infer the labels of all frames based on global diagnosis results.
However, it is common that the global label may not cover all regions of the
image. This is called ‘semantic exclusivity’ in this paper. As shown in Fig. 1,
if the pCLE video/mosaic is annotated with ‘normal’, all its frames should be
labeled as ‘normal’. For the ‘benign’ videos, the only confirmed issue is that the
video includes at least one frame that indicates the existence of benign regions.
Therefore, the status of frames can be either ‘normal’ or ‘benign’. Similarly, the
malignant videos are also likely to include benign and normal frames.

In order to infer the labels of all image frames, we built a frame-link graph
and propagate the labels between the samples. For all frames Xi,j from the
training dataset, the frame-link graph G = {V,E} is constructed where the
nodes V are composed with pCLE frames and the edges E with the weight
matrix W indicate the similarity between pCLE frames. In this paper, we use
the k-NN graph based on RBF-Kernel where the similarity between Xi,j and
Xi′,j′ is calculated by exp(−‖f l

i,j −f l
i′,j′‖22/σ) where f l

i,j and f l
i′,j′ are the frame-

based features. In order to recover the latent ‘normal’ frames in ‘benign’ and
‘malignant’ videos, the labels of frames from normal videos are propagated via
the frame-link graph as follows:

min
Y

QY = Y TLY + λ‖Ynormal − Y ∗
normal‖22 (1)

where L is the graph Laplacian of the similarity matrix W . Y is the set of
labels of all frames after propagation. ‖Ynormal −Y ∗

normal‖22 indicates the frames
from normal videos should always be labeled with ‘normal’. The probability
of a specific frame belongs to the normal class can be obtained via the label
propagation from normal frames. However, the propagation scheme in Eq. (1)
has no constraints on global labels. For a benign video, there is at least one
frame belonging to the benign class. Therefore, we add the constraints to Eq. (1)
as follows:

min
Y

QY = Y TLY + λ‖Ynormal − Y ∗
normal‖22

s.t. mi ≥ (1 − Y l
i )T1 ≥ 1,∀Y g

i �= 1
(2)

where Y l
i = {Y l

i,1, . . . , Y
l
i,mi

} is the vector of labels of pCLE video Xi and 1
is a all-one vector which has the same number of element with Y l

i ; By adding
this constraint, the frames which are not likely to be normal are assigned with
low confidence for normal class. If the probability is lower than a pre-defined
θ, it can be considered as a benign frame. Similarly, the label propagation is
also conducted from the benign videos to malignant videos to recover the latent
benign regions. The problem in Eq. (2) can be solved by Augmented Lagrangian
method (ALM) [7]. After the label propagation, all frames Xi,j are assigned with
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the pseudo labels Ȳ l
i,j . The frame-based classification layers H l are then trained

by minimizing the cross-entropy loss as follows:

min Llocal =
∑

H l(f l
i,j) log Y l

i,j (3)

2.3 Global Label Classification

The mosaic-based methods take the holistic image as input to generate the global
diagnosis result. However, the freehand capture of pCLE data can introduce
irregular background in the mosaic image, thus leading to overfitting. Instead of
using holistic features of the whole pCLE mosaics, we extract the features for
all pCLE frames fi,j to generate the global features as follows:

fg
i = F({f l

i,j}), fg(d) = max ({f l
i,j(d)}) (4)

where F is the max-pooling function. Therefore, the mosaic-based classification
layers Hg are trained by minimizing the loss defined as follows:

min Lglobal =
∑

Hg(fg
i ) log Ȳ g

i (5)

2.4 Semantic Exclusivity Loss

Although Eqs. (3) and (5) are introduced for global and local classification, the
learning of two streams is still separated where only the lower feature extraction
layers are shared. In order to preserve the consistency between the global and
local results, we introduce the semantic exclusivity loss based on the exclusiv-
ity relationship between labels: If the global label is ‘normal’, the ‘benign’ and
‘malignant’ labels are not likely to co-exist in local label sets; If the global label
is ‘benign’, there will be no ‘malignant’ local frames. Therefore, the semantic
exclusivity loss is defined as follows:

Lex(Y l
i,j , Y

g
i , Y g∗

i ) =

⎧
⎨

⎩

−Y g
i,n(log Ȳ l

i,n − log Ȳ l
i,b − log Ȳ l

i,m) if Y g∗
i,n = 1,

−Y g
i,b(log Ȳ l

i,b − log Ȳ l
i,m) if Y g∗

i,b = 1,

−Y g
i,m log Ȳ l

i,m if Y g∗
i,m = 1.

(6)

where Ȳ l is the max-pooled label over all frames; Y g∗ is the ground-truth of
global label where Y g∗

i,n, Y g∗
i,b and Y g∗

i,m are the probability of ‘normal’, ‘benign’
and ‘malignant’ respectively. The semantic exclusivity loss can be regarded as
an alternative of the standard cross-entropy loss with additional penalizations
on the impossible co-existence of local labels.

2.5 Final Objective and Alternative Learning

The final objective is a combination of global classification, local detection and
semantic exclusivity loss as follows:

min Lfinal = λglobalLglobal + λlocalLlocal + λexLex (7)
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where λglobal, λlocal and λex are balance weights of each terms. We set λglobal = 1,
λlocal = λex = 0.001 in this paper. It is worth nothing the label propagation
process cannot be directly solved via back-propagation. In each epoch, the label
propagation is firstly conducted to obtain the pseudo labels for each frame. Then
the deep neural networks are trained via back propagation.

3 Experiments

Dataset and Experimental Settings: The dataset is collected by a pre-
clinical pCLE system (Cellvizio, Mauna Kea Technologies, Paris, France) as
described in [8]. Breast tissue samples are obtained from 45 patients that are
diagnosed with three classes including normal, benign and malignant. We finally
obtained 700 pCLE mosaics which consist of 8000 frames in total. Among them,
500 pCLE mosaics are used for training and the rest are for testing. For data
annotation, each frame is manually labeled with the corresponding class by
experts and the mosaics are also labeled with the final diagnosis.

The feature extraction layers in Fig. 2 is based on the residual architecture
proposed in [9]. We use the Adam solver [10] with a batch size of 1. The Pytorch2

framework is adopted to implement the deep convolution neural networks and the
experiment platform is a workstation with Xeon E5-2630 and NVIDIA GeForce
Titan Xp.

Qualitative Performance Evaluation. We firstly present two typical cases in
Fig. 3. The first column is the original pCLE video3; The second column selects
local prediction for the representative frames where the green rectangles indi-
cates the normal frames while the red rectangle indicates the malignant frames.
Given a new pCLE video, the local and global prediction are updated along
with the time frames. For cases 1, several frames at the beginning include the
stroma tissues which are similar to the malignant cases. Therefore, the proba-
bility of malignant class on both local and global prediction are over 0.1. After
receiving sufficient numbers of pCLE frames, the prediction tends to be stable.
For case 2, the pCLE starts with normal frames which supports both local and
global prediction to ‘normal’. However, the malignant frames exist from frame
# 10 to #20 which leads to the global prediction to be ‘malignant’. Although
several frames are likely to be normal after frame #20, the global prediction
is not changed which demonstrates the proposed method is able to handle the
pCLE video with different classes of local cases. More examples can be found in
supplementary materials.

Quantitative Performance Evaluation. We also present the quantitative
results of global and local prediction on pCLE dataset. The average precision
of each class and the mean average precision over all classes are reported to
measure the accuracy of classification. Several baselines are implemented in this
2 https://github.com/pytorch/pytorch.
3 For better visualization, we present the pCLE mosaics in the experiment. However,

the proposed method takes frames as input without mosaicking.

https://github.com/pytorch/pytorch
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Fig. 3. Examples of global and local prediction.

Table 1. Performance of global and local prediction. WSFL-S refers to the proposed
method without semantic exclusivity loss in Eq.(6). The best result is in bold and the
second best result is underlined.

Global-Prediction Normal Benign Malignant Average

DenseSIFT [11] 0.805 0.754 0.842 0.816

MVMME [3] 0.823 0.762 0.829 0.827

UMGM [4] 0.834 0.781 0.855 0.834

CNN [9] 0.811 0.723 0.835 0.819

Patch-CNN [5] 0.846 0.802 0.867 0.833

WSFL-S 0.831 0.829 0.855 0.832

WSFL 0.845 0.828 0.872 0.844

Local-Prediction Normal Benign Malignant Average

DenseSIFT [11] 0.857 0.822 0.863 0.851

MVMME [3] 0.859 0.831 0.884 0.862

UMGM [4] 0.882 0.846 0.913 0.884

CNN [9] 0.901 0.885 0.914 0.903

Patch-CNN [5] 0.922 0.905 0.943 0.921

WSFL-S 0.897 0.882 0.926 0.903

WSFL 0.903 0.894 0.938 0.914

paper for comparison including dense-SIFT in [11], MVMME in [3], UMGM
in [4], Residual CNN [9] and Patch-CNN in [5]. During the model training, all
global and local labels are available for baselines while the proposed method
is trained with only global supervision. Table 1 shows the classification perfor-
mance of multiple baseline methods and the proposed WSFL. In overall view,
the proposed WSFL achieves the competitive accuracy on both global and local
prediction compared to all baselines. For global prediction task, the proposed
method outperforms the methods with hand-crafted features even MVMME and
UMGM adapt the knowledge from histopathological slides which demonstrated
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the good feature extraction of convolutional neural networks. However, the CNN
model which directly takes the whole mosaic as input does not perform well on
global prediction tasks. The main reason is that the pCLE mosaics are resized
into the same sizes which are different from the original scales. Compared to
the Patch-CNN method, the proposed method recovers the local label based
on semantic propagation that helps to learn class-specific features. Moreover,
the semantic exclusivity loss further improves the proposed method. For local
prediction tasks, the proposed method outperforms most of the baselines even
with only global supervision which is also closed to the Patch-CNN trained with
frame labels.

4 Conclusion

In this paper, we have proposed a weakly-supervised feature learning (WSFL)
framework to learn discriminative features for endomicroscopy analysis. A two-
stream convolutional neural networks is adopted to jointly learn global and local
prediction based on label propagation and semantic exclusivity loss. Compared
to previous frame-based and mosaic-based methods, the proposed framework is
trained under the global supervision only while the classification accuracy on
both local and global tasks is promising on the breast tissue dataset with 700
pCLE samples. Our future work will focus on reformulating the label propagation
process as forward/background operations in neural networks for end-to-end
discriminative feature learning.
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