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Abstract. Skin lesion segmentation (SLS) in dermoscopic images is a
crucial task for automated diagnosis of melanoma. In this paper, we
present a robust deep learning SLS model represented as an encoder-
decoder network. The encoder network is constructed by dilated residual
layers, in turn, a pyramid pooling network followed by three convolution
layers is used for the decoder. Unlike the traditional methods employing
a cross-entropy loss, we formulated a new loss function by combining
both Negative Log Likelihood (NLL) and End Point Error (EPE) to
accurately segment the boundaries of melanoma regions. The robustness
of the proposed model was evaluated on two public databases: ISBI 2016
and 2017 for skin lesion analysis towards melanoma detection challenge.
The proposed model outperforms the state-of-the-art methods in terms
of the segmentation accuracy. Moreover, it is capable of segmenting about
100 images of a 384 × 384 size per second on a recent GPU.
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1 Introduction

According to the Skin Cancer Foundation statistics, the percentage of both
melanoma and non-melanoma skin cancers is rapidly being increased over the last
few years [18]. Dermoscopy, non-invasive dermatology imaging methods, can help
the dermatologists to inspect the pigmented skin lesions and diagnose malignant
melanoma at an initial-stage [11]. Even the professional dermatologists can not
properly classify the melanoma only by relying on their perception and vision.
Sometimes human tiredness and other distractions during visual diagnosis can
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also yield a high number of false positives. Therefore, a Computer-Aided Diagno-
sis (CAD) system is needed to assist the dermatologists to properly analyze the
dermoscopic images and accurately segment the melanomas. Many melanoma
segmentation approaches have been proposed in the literature. An overview on
numerous melanoma segmentation techniques is presented in [25]. However, this
task is still a challenge, since the dermoscopic images have various complexities
including different sizes and shapes, fuzzy boundaries, different colors and the
presence of hair [7].

Fig. 1. Architecture of the proposed skin lesion segmentation network.

In last few decades, many approaches have been proposed to cope with the
aforementioned challenges. Most of them are based on thresholding, edge-based,
region-based active contour models, clustering and supervised learning [4]. How-
ever, these methods are unreliable when dermoscopic images are inhomogeneous
or lesions have fuzzy or blurred boundaries [4]. Furthermore, their performance
relies on efficient pre-processing algorithms, such as illumination correction and
hair removal, which badly affect the generalizability of these models.

Recently, deep learning methods applied to image analysis, specially Convo-
lutional Neural Networks (CNNs) have been used to solve the image segmenta-
tion problem [14]. These CNN-based methods can automatically learn features
from raw pixels to distinguish between background and foreground objects to
attain the final segmentation. Most of these approaches generally are based on
encoder-decoder networks [14]. The encoder networks are used for extracting
the features from the input images, in turn the decoder ones used to construct
the segmented image. The U-net network proposed in [17] has been particu-
larly designed for biomedical image segmentation based on the concept of Fully
Convolutional Networks (FCN) [14]. The U-net model reuses the feature maps
of the encoder layers to the corresponding decoders and concatenates them to
upsampled decoder feature maps, which are also called “skip-connections”. The
U-Net model for SLS outperformed many classical clustering techniques [13].

In addition, the deep residual network (ResNet) model [23] is a 50-layers
network designed for segmentation tasks. ResNet blocks are used to boost the
overall depth of the networks and allow more accurate segmentation depending
on more significant image features. Moreover, Dilated Residual Networks (DRNs)
proposed in [22] increase the resolution of the ResNet blocks’s output by replac-
ing a subset of interior subsampling layers by dilation [21]. DRNs outperform the
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normal ResNet without adding algorithmic complexity to the model. DRNs are
able to represent both tiny and large image features. Furthermore, a Pyramid
Pooling Network (PPN) that is able to extract additional contextual information
based on a multi-scale scheme is proposed for image segmentation [26].

Inspired by the success of the aforementioned deep models for semantic seg-
mentation, we propose a model combining skip-connections, dilated residual and
pyramid pooling networks for SLS with different improvements. In our model,
the encoder network depends on DRNs layers, in turn the decoder depends on
a PPN layer along with their corresponding connecting layers. More features
can be extracted from the input dermoscopic images by combining DRNs with
PPN, in turn it also enhances the performance of the final network. Finally,
our SLS segmentation model uses a new loss function, which combines Negative
Log Likelihood (NLL) and End Point Error (EPE) [1]. Mainly, cross-entropy is
used for multi-class segmentation models, however it is not as useful as NLL in
binary class segmentation. Thus, in such melanoma segmentation, we propose
to use NLL as a loss function. In addition, for preserving the melanoma bound-
aries, EPE is used as a content loss function. Consequently, this paper aims at
developing an automated deep SLS model with two main contributions:

• An encoder-decoder network for efficient SLS without any pre- and post-
processing algorithms based on dilated residual and pyramid pooling networks
to enclose coarse-to-fine features of dermoscopic images.

• A new loss function that is a combination of Negative Log Likelihood and
End Point Error for properly detecting the melanoma with weak edges.

2 Proposed Model

2.1 Network Architecture

Figure 1 shows the architecture of the proposed SLSDeep model with DRNs [27]
and PPN [9]. The network contains two-fold architecture: encoder and decoder.
Regarding the encoder phase, the first layer is a 3×3 convolutional layer followed
by 3 × 3 max pooling with stride 2.0 that generates 64 feature maps. This layer
uses ReLU as an activation and batch normalization to speed-up the training
steps with a random initialization. Following, four pre-trained DRNs blocks are
then used to extract 256, 512, 1024 and 2048 feature maps, respectively as shown
in Fig. 2. The first, third, and fourth DRNs layers are with stride 1.0, in turn the
second one is with stride 2.0. Thus, the size of final output of encoder is 1/8 of the
input image (e.g. in our model, the input image is in 384 × 384 and the output
feature maps of the encoder is 48 × 48). For global contextual prior, average
pooling is used before feeding to fully connected layers in image classification
[20]. However, it is not sufficient to extract necessary information from our skin
lesion images. Therefore, we do not use average pooling at the end of the encoder
and directly fed the output feature maps to the decoder network.

On the other hand, for the decoder network, we use the concept of PPN
for producing multi-scale (coarse-to-fine) feature maps and then all scales are
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Fig. 2. Architecture of the encoder-decoder network.

concatenated together to get more robust feature maps. PPN use a hierarchical
global prior of variant size feature maps in multi-scales with different spatial
filters as shown in Fig. 2. In this paper, the used PPN layer extracts feature maps
using four pyramid scales with rescaling sizes of 1 × 1, 2 × 2, 3 × 3 and 6 × 6. A
convolutional layer with a 1×1 kernel in every pyramid level is used for generating
1024 feature maps. The low-dimension feature maps are then upsampled based
on bilinear interpolation to get the same size of the input feature maps. The input
and four feature maps are finally concatenated to produce 6144 feature maps
(i.e., 4 × 1024 feature maps concatenated with the input 2048 feature maps).
Sequentially, two 3×3 convolutional layers are followed by two upsampling layers.
Finally, a softmax function (i.e. normalized exponential function) is utilized as
logistic function for producing the final segmentation map. A ReLU activation
with batch normalization is used in the two convolutional layers [10]. Moreover,
in order to avoid the overfitting problem, the dropout function with a ratio of
0.5 [19] is used before the second upsampling layer.

The skip connections between all layers of the encoder and decoder were
tested during the experiments. However, the best results were provided when
only one connection was skipped between the last layer of the encoder and the
output of PPN layer of the decoder. The details of the encoder and decoder
architectures are given in the supplementary materials.

2.2 Loss Function

Most of the traditional deep learning methods commonly employ cross-entropy as
a loss function for segmentation [17]. Since the melanoma is mostly a small part
of a dermoscopic image, the minimization of cross-entropy tends to be biased
towards the background. To cope with this challenge, we propose a new loss
function by combining objective and content losses: NLL and EPE, respectively.
In order to fit a log linear probability model to a set of binary labeled classes,
the NLL that is our objective loss function is minimized.

Let v ∈ {0, 1} be a true label for binary classification and p = Pr(v = 1) a
probability estimate, the NLL of the binary classifier can be defined as:

Lnll(v, p) = − log Pr(v|p) = −(v log(p) + (1 − v) log(1 − p)). (1)

In order to maximize Peak Signal-to-Noise Ratio, a content loss function
based on an end-point error proposed in [1] is used for preserving the melanoma
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boundaries. In EPE, We compared the magnitude and orientation of the edges
of the predicted mask with the correct one. Let M a generated mask and G the
corresponding ground-truth, then the EPE can be defined as:

Lepe =
√

(Mx − Gx)2 + (My − Gy)2, (2)

where (Mx, My) and (Gx, Gy) are the first derivatives of M and G, respectively
in x and y directions.

Thus, our final loss function combining the NLL and EPE can be defined as:

Ltotal = Lnll + αLepe, (3)

where α < 1 is a weighted coefficient. In this work, we use α = 0.5.

3 Experimental Setup and Evaluation

Database: To test the robustness of the proposed model, it was evaluated on
two public benchmark datasets of dermoscopy images for skin lesion analysis:
ISBI 2016 [6] and ISBI 2017 [8]. The datasets images are captured by different
devices at various top clinical centers around the world. In ISBI 2016 dataset,
training and testing part contain 900 and 379 annotated images, respectively.
The size of the images ranges from 542×718 to 2848×4288 pixels. In turn, ISBI
2017 dataset is divided into training, validation and testing parts with 2000, 150
and 600 images, respectively.

Evaluation Metrics: We used the evaluation metrics of ISBI 2016 and
2017 challenges for evaluating the segmentation performances including Speci-
ficity(SPE), Sensitivity(SEN), Jaccard index(JAC), Dice coefficient(DIC) and
Accuracy(ACC) detailed in [6,8].

Implementation: The proposed model is implemented on an open source deep
learning library named PyTorch [15]. For optimization algorithm, we used Adam
[12] for adjusting learning rate, which depends on first and second order moments
of the gradient. We used a “poly” learning rate policy [5] and selected a base
learning rate of 0.001 and 0.01 for encoder and decoder, respectively with a
power of 0.9. For data augmentation, we selected random scale between 0.5 and
1.5, random rotation between −10 and 10 degrees. The“batchsize” is set to 16
for training and the epochs to 100. All the experiments are executed on NVIDIA
TITAN X with 12GB memory taking around 20 hours to train the network.

Evaluation and Results: Since the size of the given images is very large, we
resized the input images to 384×384 pixels for training our model. In this work,
we tested different sizes and the 384 × 384 size yields the best results. In order
to separately assess the different contributions of this model, the resulting seg-
mentation for the proposed model with different variations have been computed:
(a) The SLSDeep model without the content loss EPE (SLSDeep-EPE), (b) the
proposed method with skip connections of all encoder and decoder layers (SLS-
Deep+ASC) and (c) the final proposed model (SLSDeep) with NLL and EPE
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loss functions and only one skip connection between the last layer of the encoder
and the PPN layer. Quantitative results on ISBI’2016 and ISBI’2017 datasets
are shown in Table 1. Regarding ISBI’2016, we compared the SLSDeep and its
variations to the four top methods: ExB, [16,23,24] providing the best results
according to [8]. The segmentation results of our model SLSDeep with its varia-
tions (SLSDeep-EPE and SLSDeep+ASC) provided better results than the other
four evaluated methods on the ISBI’2016 in terms of the five aforementioned
evaluation metrics. SLSDeep yields the best results among the three variations.
In addition, for the DIC score, our model, SLSDeep, improved the results with
around 3.5%, while the JAC score was significantly improved with 8%. The SLS-
Deep yielded results with an overall accuracy of more than 98%. Furthermore,
SLSDeep on the ISBI’2017 provided segmentation results with improvements of
3% and 2% in terms of DIC and JAC scores, respectively. Again SLSDeep out-
performed the three top methods of the ISBI’2017 benchmark, [2,3,24], in terms
of ACC, DIC and JAC scores. However, [24] yielded the best SEN score with just
a 0.9% improvement than our model. The SLSDeep-EPE and SLSDeep+ASC
provided reasonable results, however their results were worse than the other
tested methods in terms of ACC, DIC, JAC and SEN. However, SLSDeep-EPE
yields the highest SPE with a 0.1% and 0.3% more than MResNet-Seg [3] and
SLSDeep, respectively. Using the EPE function with the final SLSDeep model
significantly improved the DIC and JAC scores of 3% and 5%, respectively, on
ISBI’2016 and of 5% and 8%, respectively, with ISBI’2017. In addition, SLSDeep
with only one skip connections yields better results than SLSDeep+ASC on both
ISBI datasets.

Table 1. Performance evaluation on the ISBI challenges dataset

Challenges Methods ACC DIC JAC SEN SPE

ISBI 2016 ExB 0.953 0.910 0.843 0.910 0.965

CUMED [23] 0.949 0.897 0.829 0.911 0.957

Rahman et al. [16] 0.952 0.895 0.822 0.880 0.969

Yuan et al. [24] 0.955 0.912 0.847 0.918 0.966

SLSDeep 0.984 0.955 0.913 0.945 0.992

SLSDeep-EPE 0.973 0.919 0.850 0.890 0.990

SLSDeep+ASC 0.975 0.930 0.869 0.952 0.979

ISBI 2017 Yuan et al. [24] 0.934 0.849 0.765 0.825 0.975

Berseth et al. [2] 0.932 0.847 0.762 0.820 0.978

MResNet-Seg [3] 0.934 0.844 0.760 0.802 0.985

SLSDeep 0.936 0.878 0.782 0.816 0.983

SLSDeep-EPE 0.913 0.826 0.704 0.729 0.986

SLSDeep+ASC 0.906 0.850 0.739 0.808 0.905
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(a) (b) (c) (d) (a) (b) (c') (d) 

Fig. 3. Segmentation results: (a) input image, (b) ground truth and (c) correct seg-
mentation by our model, (c’) incorrect segmentation by our model, (d) segmentation
by Yuan et al. [24] model.

Qualitative results of four examples from the ISBI’2017 dataset are shown in
Fig. 3. For the first and second examples (on the top- and down-left side), the
lesions were properly detected, although the color of the lesion area is very similar
to the rest of the skin. In addition, the lesion area was accurately segmented
regardless the unclear melanoma edges. Regarding the third example (on the top-
right side), SLSDeep properly segmented the lesion area; however a small false
region having similar melanoma features was also detected. The last example is
very tricky, since the lesion shown is very small. However, the SLSDeep model
was able to detect it, but with a large false negative region.

4 Conclusions

This paper proposed a novel deep learning skin lesion segmentation model based
on training an encoder-decoder network. The encoder network used the dilated
ResNet layers with downsampling to extract the features of the input image,
in turn convolutional layers with pyramid pooling and upsampling are used to
reconstruct the segmented image. This approach outperforms, in terms of skin
lesion segmentation, the literature evaluated on two ISBI’2016 and ISBI’2017
datasets. The quantitative results show that SLSDeep is a robust segmentation
technique based on different evaluation metrics: accuracy, Dice coefficient, Jac-
card index and specificity. In addition, qualitative results show promising skin
lesion segmentation. Future work aims at applying the proposed model to various
medical applications to prove its versatility.

Acknowledgement. This research is funded by the program Marti Franques under
the agreement between Universitat Rovira i Virgili and Fundació Catalunya La Pedrera.
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