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Abstract. To better understand diseases such as cancer, it is crucial
for computational inference to quantify the spatial distribution of vari-
ous cell types within a tumor. To this end, we used Ripley’s K-statistic,
which captures the spatial distribution patterns at different scales of
both individual point sets and interactions between multiple point sets.
We propose to improve the expressivity of histopathology image features
by incorporating this descriptor to capture potential cellular interac-
tions, especially interactions between lymphocytes and epithelial cells.
We demonstrate the utility of the Ripley’s K-statistic by analyzing digi-
tal slides from 710 TCGA breast invasive carcinoma (BRCA) patients. In
particular, we consider its use in the context of imaging-genetics to under-
stand correlations between gene expression and image features using
canonical correlation analysis (CCA). Our analysis shows that includ-
ing these spatial features leads to more significant associations between
image features and gene expression.

1 Introduction

An important factor in cancer diagnosis is the distribution of heterogeneous
cells within the tumor microenvironment. A scenario where the lymphocytes are
well mixed with the cancerous epithelial cells (high lymphocyte infiltration) is
significantly different from when the two are well-separated spatially (low lym-
phocyte infiltration), which has been shown to be linked to clinical outcome [1].
While advanced deep learning based techniques have been employed to accu-
rately segment the nuclei from histopathology images [2,3], there is still a need
in computational pathology for subsequent analysis of the spatial interaction of
cells. Traditional methods to capture the distribution of cells in the tissue include
plane partitioning techniques, such as Delaunay triangulation and Voronoi dia-
grams. These methods, however, only look at the local neighborhood (of a few
adjacent nuclei), and do not account for the overall distribution of cells at dif-
ferent scales, or the interactions between different types of cells.

A similar problem arises in the area of geography to quantify the distribution
of population across a region, for example. Classical tools used to identify the
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level of randomness of spatial point process include nearest-neighbour statistics,
spectral analysis of point processes, and location-based functions. These tools
can be readily applied to the tissue setting to describe spatial statistics of cells,
and even cells of differing types, as demonstrated recently [4,5]. In this work, we
employ Ripley’s K-function [6], a location based function, to capture the second
order statistics of the point sets in the context of histopathology images.

In addition to the spatial distribution, understanding tissue environment
from different viewpoints can provide key information for use in diagnosis and
understanding of diseases. With an increase of multimodal datasets, such as The
Cancer Genomic Atlas (TCGA) [7], we now have access to both imaging and
genomic data from patients. To integrate multimodal data, different linear tech-
niques such as partial least squares, canonical correlation analysis (CCA), and
deep learning techniques (e.g., deep multimodal autoencoders and deep multi-
modal Boltzmann machines) have been developed.

Recent works analyzing multimodal data using spatial information of cell
distribution [4,5] have considered its value for prediction of patient outlook. In
contrast, the focus of our study is to enable the discovery of novel biological
connections between image features and genes, through CCA and sparse-CCA
(SCCA), to improve the understanding of diseases, as demonstrated recently [8].
We hope that the discovery of such connections will help not only to predict can-
cer subtype or survival but also to learn more about the fundamental biological
connection between genotype and phenotype.

We applied our new method to 710 breast invasive carcinoma (BRCA)
patients from TCGA and observed an increased correlation between the resulting
image features and gene expressions, suggesting a more informative image fea-
ture vector in terms of its connection with molecular signatures. Further, after
identifying the highly correlated genes, we investigated their association with
specific pathways and found several significantly associated pathways that are
known to be related to cancer. This analysis demonstrates a proof-of-concept
workflow which, we believe, will be important for future unsupervised discov-
ery of genotype-phenotype connections in disease as more imaging-genomic data
becomes available and techniques for cell segmentation and feature extraction
become more refined.

2 Method

To work with a multimodal dataset comprising histopathology images and their
gene expression measurements from the tumors of cancer patients, we use the
overall workflow shown in Fig. 1a consisting of image feature extraction, spa-
tial feature computation, and CCA (or SCCA) between the gene expressions
and image features to reveal important connections between the two different
modalities.
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Fig. 1. (a) Our work-flow comprising CNN-based image feature extraction, spatial
feature descriptor, and CCA between the features. (b) Pictorial representation of the
K-function evaluated at radius r for the blue process, by counting blue points (self
K-function) and red stars (cross K-function) within radius r.

2.1 Extraction of Image Features

For cancer patients, hematoxylin and eosin (H&E) histopathology images are
routinely obtained for diagnosis, and we use these images to acquire quantitative
measures of relevant nuclear and cellular characteristics, including morphology,
granularity, and spatial distribution. This process of image feature extraction
is described in our earlier work [2], which we summarize briefly here. First, we
segment nuclei using a patch-based convolutional neural network (CNN) app-
roach, which outputs a binary label indicating if the center of the patch is within
nucleus or not. The entire image is scanned by our CNN, producing a binary
label at each pixel. CellProfiler [9], a cell analysis tool, is used with the binary
segmentation mask to extract quantitative features of the texture, morphology,
and color of nuclei and cells. To obtain a single feature vector for the patient,
each of the nuclear and cellular features are summarized across all the cells in
the image by their mean, standard deviation, and percentiles (with 10% incre-
ments), yielding ∼2400 unique features for each patient. In our analysis, since
we analyzed whole-slide images (WSIs) provided by TCGA, we processed only
a few representative patches per slide for computational feasibility.

In order to distinguish lymphocytes from epithelial cells for subsequent spa-
tial analysis, a simple thresholding based on the area and intensity of the cell is
used. Let c denote a cell detected by the CNN. Then,

if Area(c) < τ1 and Average-Intensity(c) > τ2, mark c as a lymphocyte,

where τ1 and τ2 are thresholds chosen to manually. Some sample results are
shown in Fig. 2. This yields nuclei of two different types: epithelial – potentially
cancerous in nature, and lymphocytes – white blood cells indicating immune
activity. It is possible that some false positives (such as small epithelial or stro-
mal cells) may be incorrectly detected as lymphocytes by this method, but we
believe the relative frequency of such will be small since lymphocytes are well-
discriminated by their small size and dark color. This threshold could be replaced
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in the future by a neural network that both segments nuclei and classifies them
according to cell type.

2.2 Computation of Spatial Descriptor

To capture the spatial distribution information of individual cells, and interac-
tion between the two types of cells (i.e., ephithelial and lymphocyte), we make
use of Ripley’s K-function [6]. For two sets random points A and B in a d-
dimensional space, with d ≥ 2 and respective point densities λ1, λ2, the self
K-function (KA(r) for A) and cross K-function (KA,B(r) between A and B) are

KA(r) =
1
λ1

E{fA(A, r)}, (1)

KA,B(r) =
1
2

( 1
λ1

E{fA(B, r)} +
1
λ2

E{fB(A, r)}
)
, (2)

where fP1(P2, r) is the number of points from point set P2 within a distance r
of a randomly chosen point from P1, and E denotes expected value. Note that
by way of definition, the K-function is an increasing curve with respect to radius
r. A pictorial representation of the evaluation is shown in Fig. 1b.

In practice, the average value is computed to estimate the K-function in place
of the expectation. The resulting function, sampled at a range of different radii,
represents the spatial feature vector of the patient, which is then combined with
the previously obtained nuclear and cellular features to obtain the overall image
feature vector of each patient.

2.3 Canonical Correlation Analysis

To assess the relationship between the image features and gene expression
extracted from tumors, we make use of canonical correlation analysis. CCA [10]
is a linear method to identify the correlation between two sets of variables.
Mathematically, given X ∈ R

p×n and Y ∈ R
q×n normalized to zero mean and

unit variance, CCA looks for α ∈ R
p and β ∈ R

q to maximize the Pearson’s
correlation coefficient ρ based on the optimization problem in Eq. 3.

max
α,β

ρ(α, β) = αTXTYβ such that αTXTXα = βTYTYβ = 1. (3)

To obtain more than one linear combination, or variate, the above process can
be repeated, imposing orthogonality constraints.

The setup of CCA requires n ≥ max(p, q), which often does not hold for
imaging-genetic data, since there are thousands of genes, and potentially thou-
sands of image features, and possibly only a few hundred samples, or patients.
Thus, to deal with high dimensional data, the SCCA formulation by Witten
et al. [11], which optimizes the same objective function over convex sparsity
constraints, is used. The algorithm is iterated to obtain multiple variates.
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3 Experiments and Results

The framework was applied to WSIs of 710 TCGA-BRCA patients. To make
the processing of WSIs feasible, up to 15 manually chosen 1000× 1000 represen-
tative patches in the tumor regions were used for feature extraction. The gene
expression data was obtained from cBioPortal [12].

3.1 Ripley’s K-Function on Real Data

The variation in K-functions can be seen by computing the self K and cross
K-functions for a couple of point sets (Fig. 2a and b) obtained after processing
the TCGA-BRCA histopathology images. Configuration 1 is denoted by dashed
lines and configuration 2 by solid lines in Fig. 2c. Firstly, all the identified cells
obtained from the CNN are utilized together to obtain the self K-functions Kall,1

and Kall,2 shown in black. We observe that there is slight difference in these self
K-functions, though the distinction is not prominent.

Next, the identified cells were differentiated into epithelial and lymphocytes,
shown in Fig. 2 in cyan and red, respectively, as described previously. The self K -
functions computed for the resulting epithelial cells (Kepi,1, Kepi,2) are not very
different. In contrast, the self K-functions of the lymphocytes (Klym,1, Klym,2)
show considerable difference with Klym,1 lying below Klym,2 for smaller values
of radius r and thereby capturing the clustered nature of lymphocytes in con-
figuration 2. The cross K-functions between the epithelial cells and lymphocytes
(Kcross,1, Kcross,2) are such that Kcross,2 lies well below Kcross,1 indicating the
absence of considerable interaction between the points sets in configuration 2.

Fig. 2. The variation in self K and cross K-function (c) for two configurations (a) and
(b) where epithelial cells are shown in cyan, and lymphocytes in red.

3.2 CCA with Image and Spatial Features

To apply CCA, a subset of both image features and genes need to be chosen.
For the nuclei-based image features, those corresponding to the mean and stan-
dard deviation of fundamental cellular and nuclear properties such as the color,
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texture and shape features are chosen, yielding a restricted set of 84 features.
For the spatial features, we considered two different settings: (1) the self K-
function evaluated on all detected cells, without differentiation of epithelial cells
and lymphocytes (corresponding to the black curves in Fig. 2c), and (2) the cross
K-function between the lymphocytes and epithelial cells (green curves in Fig. 2c)
based on thresholding, as described earlier. In both settings, the K-function is
evaluated for several different ranges of radii, sampled evenly at 100 values. The
resulting spatial feature is augmented with the nuclei-based 84-dimensional fea-
ture vector to yield an overall 184-dimensional feature vector per patient. For
the genes, the PAM50 subset of genes, which have been shown to be informative
in breast cancer subtyping, is chosen.

The resulting correlation coefficients (ρ) and associated p-values for the corre-
lations (computed using Wilk’s lambda statistic) identified by CCA are presented
in Table 1 for both settings. The spatial feature is modified in each setting by
varying the maximum radius for computation of the K-functions as shown in the
first column. It is observed that the augmentation of spatial features significantly
improves the correlation for the first 3 variates in both the settings. The correla-
tion achieved by the first variate increases by a factor of around 5%, while both
second and third variates show an improvement in correlation by a factor of 10%
for both settings. This increase in correlation implies a stronger and, therefore,
more meaningful, association between the representations of image and genomic
features. Beyond the 3 variates, the combined spatial image features did not
yield statistically significant results.

Table 1. Correlation coefficient (ρ) and associated p-values of self K-function and cross
K-function based image features with PAM50 Genes for top 3 variates

Radii Self K Cross K

1st variate 2nd variate 3rd variate 1st variate 2nd variate 3rd variate

ρ p-value ρ p-value ρ p-value ρ p-value ρ p-value ρ p-value

None 0.74 1e−15 0.63 4.6e−14 0.60 7.7e−09 0.74 1e−15 0.62 4.6e−14 0.60 7.7e−09

r < 100 0.81 1.8e−13 0.74 1.3e−05 0.70 1.2e−02 0.79 1.9e−15 0.74 1.3e−08 0.71 1.1e−03

r < 300 0.81 1.4e−14 0.75 2.2e−06 0.71 2.9e−03 0.79 7.6e−09 0.75 1.7e−03 0.71 1.9e−03

r < 500 0.80 2.4e−13 0.74 3.4e−06 0.72 4.0e−03 0.78 9.4e−09 0.75 1.2e−03 0.73 1.5e−03

3.3 Sparse CCA with Image and Spatial Features

As mentioned, SCCA avoids the need to prune the gene and image feature set a
priori and instead discovers which features of both modalities lead to the highest
correlation and, therefore, the most meaningful association. We ran SCCA itera-
tively until we obtained five variates. Beyond the first five variates, we obtained
variates similar to the first five due to the lack of orthogonality enforcement in
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SCCA. The L1 penalty factor was determined automatically by the algorithm
to obtain the result with the highest statistical significance. We used the set of
3400 genes with the highest variance of expression and 3400 image features com-
prising the 2400 dimensional nuclear and cellular features augmented with the
cross K-function between detected lymphocytes and epithelial cells evaluated at
1000 equally-spaced radii in different ranges. The other setting of using the self
K-function treating all cells as the same type did not yield statistically signif-
icant results, so we do not report the results here. The resulting correlations
discovered by SCCA are shown in Table 2. We observe that the inclusion of the
spatial features increases the correlation for variates numbered three through
five, while having little effect on the first two variates.

Table 2. Correlation coefficient of spatially-augmented image features with gene
expression based on SCCA for the first five variates

Radii L1 penalty 1st variate 2nd variate 3rd variate 4th variate 5th variate

None 0.05 0.490 0.404 0.321 0.424 0.399

r ≤ 100 0.05 0.489 0.403 0.466 0.424 0.382

r ≤ 300 0.52 0.470 0.345 0.457 0.478 0.460

r ≤ 500 0.05 0.489 0.403 0.466 0.535 0.424

We next identified the genes and image features which are highly correlated
with the variates for the setting that yields the highest correlation coefficient
(r ≤ 500). For the image features, we observe that the 4th variate is dom-
inated by spatial features, while being uncorrelated with the nuclei-based fea-
tures (Fig. 3a). We refer to this variate as the spatial variate. The presence of such
a variate highlights the importance of spatial features in correlations with genes
by implying that these features capture important properties of gene expression
variation.

The correlation of all genes with the corresponding spatial variate, ordered
decreasingly, is shown in Fig. 3b. To interpret the function of the genes cho-
sen by the spatial variate of SCCA, we used the online functional annotation
tool DAVID [13] to determine the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways associated with genes with a correlation of more than 0.4, a
threshold chosen by studying Fig. 3b. Of the different pathways we obtained, the
most significant ones are shown in Table 3. These belong to categories important
in cancer in the different properties of cells’ growth, death and interaction.
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Fig. 3. SCCA for gene expression and image features, with spatial features added. (a)
The fourth variate has a strong negative correlation with most spatial features. (b)
The correlation of gene expression with this variate showed very high correlation with
a few genes and then a linear decay in correlation. We chose the transition at the 480th
gene, corresponding to a correlation threshold of 0.4, for use in pathway analysis.

Table 3. Pathways involved, number of overlapping genes, percentage of pathway genes
identified, p-value and Benjamini-Hochberg corrected p-value of the top 480 correlated
genes for the fourth variate from SCCA

KEGG pathway Gene count % p-value Benjamini

Cell cycle 12 2.7 7.5e−4 0.034

p53 signaling pathway 9 2.0 6.0e−4 0.041

Pathways in cancer 17 3.8 2.2e−2 0.300

4 Discussion and Conclusions

We have demonstrated the use of Ripley’s K-function in the histopathology set-
ting to encode spatial information. We showed that incorporating spatial features
increases correlation with PAM50 genes expression by factors of 10%. Addition-
ally, by employing SCCA, we verified that the spatial features are able to cap-
ture significant association with genes independent of other image features. We
demonstrated how this discovered association could be used to implicate asso-
ciated pathways in the spatial distribution of cells in a tumor. We believe such
analysis will be significant for future research in understanding the connections
of genes to the heterogeneity of the tumor microenvironment in diseases.
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