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Abstract. Recovering the 3D structure of a stack of histological sections
(3D histology reconstruction) requires a linearly aligned reference volume
in order to minimize z-shift and “banana effect”. Reconstruction can then
be achieved by computing 2D registrations between each section and its
corresponding resampled slice in the volume. However, these registra-
tions are often inaccurate due to their inter-modality nature and to the
strongly nonlinear deformations introduced by histological processing.
Here we introduce a probabilistic model of spatial deformations to effi-
ciently refine these registrations, without the need to revisit the imaging
data. Our method takes as input a set of nonlinear registrations between
pairs of 2D images (within or across modalities), and uses Bayesian infer-
ence to estimate the most likely spanning tree of latent transformations
that generated the measured deformations. Results on synthetic and real
data show that our algorithm can effectively 3D reconstruct the histology
while being robust to z-shift and banana effect. An implementation of the
approach, which is compatible with a wide array of existing registration
methods, is available at JEI’s website: www.jeiglesias.com.

1 Introduction

Combining histology with mm-scale volumetric images finds multiple applica-
tions in areas such as atlas building (e.g., [1]) or modeling the relationship
between the information at micro- and macro-scale (e.g., [2]). Combining the two
modalities requires histology reconstruction, i.e., registration of 2D histological
sections to volumes to recover the lost 3D structure. The role of the reference
volume is critical in reconstruction; in its absence, one can only resort to pairwise
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registration of the histological sections [3], which leads to z-shift (accumulation
of registration errors) and banana effect (straightening of curved structures). In
the remainder we assume that a reference volume is always available.

Most reconstruction methods assume that the nonlinear deformations in the
histological sections occur within plane. Then, reconstruction can be decoupled
into estimating a 3D transformation (often linear) between the histological stack
and the volume, and estimating a set of nonlinear 2D transformations between
each section and the corresponding resampled plane in the registered volume.
An intermediate modality is sometimes used to estimate the 3D transformation;
e.g., blockface photographs can be stacked and linearly registered to the reference
volume [4]. Otherwise, the two problems can be solved iteratively, i.e., optimizing
a 3D transformation with the 2D deformations fixed, and vice versa [5].

If the 3D registration is fixed, any 2D, nonlinear, intermodality registration
algorithm can be used to align the histological sections to the corresponding
resampled slices in the reference volume. However, this baseline approach often
yields jagged reconstructions, as this registration problem is difficult to solve due
to two reasons: the large and slice-varying differences in intensity and contrast
profiles between the modalities; and the extensive geometric distortion intro-
duced by sectioning and mounting of the tissue – including folding and tears.

Smoother, more accurate reconstructions, can be obtained by considering
neighboring sections when computing the 2D registrations, e.g., a section is
deformed to match not only the corresponding resampled slice, but also the
sections right above and below [1]. This approach unfortunately inherits the effi-
ciency limitations of coordinate descent, and is thus computationally expensive:
it requires many passes over each slice, and the use of a cost function with three
channels. For instance, 20–25 reconstruction iterations were required on average
in [1], hence running 60–70 times slower than the baseline approach.

A faster alternative is to first compute 2D nonlinear registrations between
neighboring histological sections, and then use them regularize the 2D transfor-
mations between the histology and the reference volume. Since images are not
revisited to update registrations, such approaches are computationally efficient.
For example, poor linear registrations between neighboring sections are corrected
by registration to other neighbors in [6]. Other approaches seek smoothness in
the z direction with low-pass filtering in linear [5,6] or nonlinear transformation
spaces [7]. However, the optimality of such ad hoc approaches is unclear; e.g.,
early stopping is required in [7] as it converges to a solution with banana effect.

Here we present a probabilistic model in the space of 2D nonlinear spatial
deformations, which accommodates measurements (2D registrations) between
arbitrary pairs of sections and slices, neighboring or not, within or across
modalities. The measurements are assumed to be noisy observations of com-
positions of latent transformations, which interconnect all the images in the two
datasets through a spanning tree. We then use Bayesian inference to estimate the
most likely latent transformations that generated the observations. Compared
to previous works: 1. We explicitly optimize a principled objective function,
which achieves smooth registrations while minimizing z-shift and banana effect;
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2. Model parameters are estimated in inference (no parameter tuning required);
and 3. Thanks to approximate composition of stationary velocity fields (SVF)
[8], the latent transformations can be globally and efficiently optimized for fixed
model parameters.

2 Methods

2.1 Probabilistic Framework

Let {Hn(x)}n=1,...,N be a stack of N histological sections, where x ∈ Ω
represents the pixel locations over a discrete, 2D image domain Ω. Let
{Mn(x)}n=1,...,N be the corresponding slices of the reference volume, which we
will henceforth assume to be an MRI scan. We further assume that the MRI and
histological stack have been linearly aligned (e.g., with [5]). Let {Tn}n=1,...,2N−1

be a set of 2N − 1 latent, noise-free, nonlinear, diffeormorphic spatial transfor-
mations, which yield a spanning tree interconnecting all the images in the two
datasets. Although our algorithm is independent of the choice of tree, we use
for convenience the convention in Fig. 1a: Tn, for n ≤ N , registers histological
section n to MRI slice n (i.e., maps coordinates from MRI space to histology);
and TN+n maps MRI slice n to MRI slice n + 1, thereby modeling the banana
effect and z-shift.

Now, let {Rk}k=1,...,K be a set of K diffeomorphic transformations between
pairs of images in the dataset (any pair, within or across modalities), estimated
with an image registration method. Rk can be seen as a noisy version of a
transformation equal to the composition of a subset of (possibly inverted) latent
transformations of the spanning tree {Tn}. In general, K will be several times
larger than N , and we can use Bayesian inference to estimate the latent trans-
formations {Tn} that most likely generated the observed registrations {Rk}.

Our choice of modeling nonlinear spatial transformation with diffeomor-
phisms is motivated by the Log-Euclidean framework, in which transformations
are parameterized in the Lie group of SVFs [8]. Let {Tn} and {Rk} be the
SVFs of the transformations, whose Lie exponentials are the corresponding dif-
feomorphisms {Tn} and {Rk}, i.e., Tn = exp[Tn] and Rk = exp[Rk]. Then, it
follows (one-parameter subgroup property) that the inverse of a transformation
is equivalent to its negation in the Log-space, i.e., T −1

n = exp[−Tn]. More-
over, the composition of diffeomorphisms parameterized by SVFs is given by
Tn ⊕ Tn′ = log[exp(Tn) ◦ exp(Tn′)], whose analytical solution is provided by
the Baker-Campbell-Hausdorff (BCH) series. By truncating the Lie bracket and
considering only its first order terms, the BCH series can be approximated by:
Tn ◦ Tn′ ≈ exp[Tn + Tn′ ]. While this approximation theoretically only holds for
relatively small deformations, it is commonplace in state-of-the-art registration
methods (e.g., [9]), and also enables us to globally optimize the objective function
with respect to the transformations in inference – see Sect. 2.2 below.

To model the noise in the registrations, we choose an isotropic Gaussian
model in the Log-space, which, despite its simplicity, works well in practice
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(e.g., [8]). Henceforth, we will assume that Tn and Rk are shaped as |Ω| × 1
vectors. Then, the SVFs of the registrations are independent and distributed as:

Rk ∼ N
(

2N−1∑
n=1

wk,nTn, σ2
kI

)
,

where N is the Gaussian distribution; σ2
k is the variance of the kth measure-

ment; I is the identity matrix; and W := (wk,n), with wk,n ∈ {−1, 0, 1}, is a
matrix encoding the latent transformations that the registrations {Rk} traverse.
Therefore, Rk is a Gaussian distribution centered on the concatenation of latent
transformations corresponding to the measurement. More specifically, wk,n = 1
if Tn is part of the path traversed by Rk with positive orientation, wk,n = −1 if
it is part of it with negative orientation, and wk,n = 0 otherwise. Therefore, if
a measurement estimates a transform from MRI slice n′ to MRI slice n′′ ≥ n′,
then wk,n = 1, for n′ +N ≤ n < n′′ +N , and 0 otherwise. If the measurement is
from MRI slice n′ to histological section n′′, then wk,n′′ = 1 needs to be added
to W . And if the measurement is between histological sections n′ and n′′, then
we need to set wk,n′ = −1 in W , as well (see example in Fig. 1b).

The probabilistic framework is completed by a model for σ2
k. A simple choice

that we found to work well in practice is:

σ2
k = ckσ2

c + dkσ2
d,

where ck = 1 when transformation k is across modalities (0 otherwise); dk is the
number of sections or slices that Rk traverses; and σ2

c and σ2
d are the associated

variance parameters, which will be estimated in inference – details below.

Fig. 1. (a) Latent transformations {Tn} connecting the MRI and histological sections
in the proposed model. A transformation between any pair of images can be written as
the composition of a subset of (possibly inverted) transformations in {Tn}. For example,
the transformation represented by the red arrow in (b) can be written as: T −1

n ◦TN+n ◦
Tn+1 – or, in log-Euclidean framework, approximated as exp[−Tn + TN+n + Tn+1].
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2.2 Inference: Proposed Method

In a fully Bayesian approach, one would optimize the posterior probability of
the first N transformations {Tn}n=1,...,N given the observations {Rk}. However,
computing such a posterior requires marginalizing over the remaining N − 1
transformations and the variances σ2

c , σ2
d. A much simpler and faster inference

algorithm can be derived by maximizing the joint posterior of all latent trans-
forms {Tn}n=1,...,2N−1 and variances [σ2

c , σ2
d]T, which is a good approximation

because: 1. the uncertainty in the intramodality transformations (n ≤ N) is
much lower than that in the intermodality transformations (n > N); and 2. the
two noise parameters can be accurately estimated, given residuals at K|Ω| loca-
tions. Using Bayes’ rule and taking logarithm, we obtain the cost function:

argmax
{Tn},σ2

c ,σ2
d

p({Tn}, σ2
c , σ2

d|{Rk}) = argmax
{Tn},σ2

c ,σ2
d

p({Rk}|{Tn}, σ2
c , σ2

d)

= argmin
{Tn},σ2

c ,σ2
d

K∑
k=1

[
|Ω| log

[
2π

(
ckσ2

c + dkσ2
d

)]
+

‖Rk −
∑2N−1

n=1 wk,nTn‖2
2 (ckσ2

c + dkσ2
d)

]
, (1)

which we alternately minimize with respect to {Tn} and [σ2
c , σ2

d]T.

Update for the Transformations: Since we approximate composition by
addition in the space of SVFs, optimizing Eq. 1 with respect to {Tn} is just
a weighted least squares problem, with a closed form expression for its global
optimum. Moreover, and since W does not depend on pixel locations, the solu-
tion is given by a location-independent set of regression coefficients:

Tn ←
K∑

k=1

zn,kRk, with Z =
(
WTdiag(1/σ2

k)W
)−1

WTdiag(1/σ2
k), (2)

where Z := (zn,k) is the matrix of regression coefficients. We note that all
measurements can impact the estimation of every deformation.

Update for the Variances: We update the variances σ2
c and σ2

d simultaneously
using a quasi-Newton method (L-BFGS). The gradient of the cost in Eq. 1 is:

∇σC =
K∑

k=1

(
|Ω|

ckσ2
c + dkσ2

d

− Ek

2(ckσ2
c + dkσ2

d)2

)
[ck, dk]T, (3)

where Ek = ‖Rk −
∑2N−1

n=1 wk,nTn‖2 is the energy of the kth residual.

Practical Implementation: We initialize the {Tn} with direct measurements,
i.e., registrations {Rk} that map the same pairs of images as {Tn}. Next, we
compute the average squared error S = (K|Ω|)−1

∑
k Ek, and initialize σ2

c = 3S,
σ2

d = S/3, such that σ2
c ≈ 10σ2

d. Finally, we iterate between updating {Tn} (with
Eq. 2) and [σ2

c , σ2
d]T (numerically with the gradient in Eq. 3). The algorithm often

converges in 3–4 iterations (approximately an hour, including registrations).
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3 Experiments and Results

3.1 Data

We validated our method quantitatively on a synthetic dataset, and
qualitatively on a real dataset. The synthetic dataset consists of 100
randomly selected cases from the publicly available, multimodal IXI
dataset (brain-development.org/ixi-dataset). After skull stripping with
ROBEX [10], we generated synthetic 2D deformation fields independently for
each slice, and applied them to the T2 images to simulate the geometric distor-
tion of the histological processing. Then, we used the T1 volume as reference to
recover the deformation in the T2 slices. The synthetic fields were created by
composing a random similarity transformation with a nonlinear deformation; the
latter was computed as the integration of a random SVF generated as smoothed
Gaussian noise.

The real dataset consists of the Allen atlas [11], publicly available at http://
atlas.brain-map.org. This dataset includes a multiecho flash MRI scan acquired
on a 7 T scanner at 200 µm resolution, and 679 Nissl-stained, 50 µm thick,
coronal, histological sections of a left hemisphere. Manual segmentations of 862
brain structures are available for a subset of 106 sections. We downsampled the
images from 1 µm to 200 µm to match the resolution of the MRI. We used the
algorithm in [5] to linearly align the MRI and the stack of histological sections.

3.2 Experiments on Synthetic Dataset

We computed all registrations with NiftyReg, using the SVF parametrization
(“-vel”) [9]. We affinely prealigned each distorted T2 slice to its T1 counter-
part, in order to keep {Rk} as small as possible – and hence minimize the error
in the approximation in the BCH series. We computed the following registra-
tions: 1. intermodality, between corresponding T1 and T2 slices; 2. intramodal-
ity, between each T1 slice and up to four slices right above; and 3. intramodal-
ity, between each T2 slice and up to four slices right above. The intermodality
registrations used mutual information and 8 pixel control point spacing. Within
modalities, we used local normalized cross correlation and 4 pixel spacing (since
it is more reliable than intermodality). We then used the proposed method to
recover the deformations, using between 0 and 4 intramodality neighbors – where
0 corresponds to the baseline approach, i.e., slice-wise, intermodality registration.

Figure 2a shows the root mean square (RMS) error of the registration,
whereas Fig. 2b shows sample outputs of the method. The baseline approach
produces very jagged contours around the cortex and ventricles. The proposed
approach, on the other hand, produces smoother registrations that yield a reduc-
tion of approximately 25% in the RMS error when two neighbors are used. When
a higher number of neighbors are considered, the results are still smooth, but
z-shift starts to accumulate, leading to higher RMS error; see for instance the
hypointense area on the hippocampus in the example in Fig. 2b (blue arrow).

http://atlas.brain-map.org
http://atlas.brain-map.org
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Fig. 2. (a) Box plot for RMS registration errors in synthetic dataset. The central mark
is the median; the box edges are the first and third quartile; whiskers extend to the most
extreme data points not considered outliers (marked as dots). (b) A sample coronal
slice from the synthetic dataset, distorted and subsequently corrected with the baseline
(i.e., 0 intramodality neighbors) and proposed method (with 2 and 4 neighbors). We
have superimposed the contour of the lateral ventricles (red) and white matter surface
(green), manually delineated on the T1 slice. The blue arrow marks an area with z-shift.

Fig. 3. (a) Sample slices of the ex vivo MRI of the Allen atlas. (b) Close-up of
hippocampus, with histological reconstruction computed with the baseline approach.
(c) Same region, reconstructed with the proposed method. (d) Close-up of axial MRI
slice. (e) Reconstruction of manual segmentations with baseline approach. (f) Recon-
struction with our method. The color map can be found on the Allen Institute website.
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3.3 Experiments on Allen Dataset

For the Allen data, we used two neighbors within each stack, as suggested by the
results on the synthetic dataset. Qualitative results are shown in Fig. 3. Much
crisper reconstruction is achieved in areas such as the hippocampus (green arrows
in Fig. 3c), cerebellum (blue) or cortical area 36 (red). Likewise, segmentations
are more accurately propagated in areas such as the nuclei of the amygdala
(different shades of green if Fig. 3e–f) and cortical regions (shades of pink).

4 Discussion and Conclusion

We have presented a probabilistic model for refining deformation fields in 3D
histology reconstruction based on SVFs, and thus directly compatible with many
widespread registration methods. Our model also serves as a starting point for
future work in four main directions: 1. Inspecting better approximations to the
composition of transformations; 2. Considering more realistic models for the
registration errors, which account for their spatial correlation; 3. Investigating
other noise models, which are more robust to outliers; and 4. Integrating an
intensity homogenization model in the framework to correct for uneven section
staining. The presented method is available at JEI’s site: www.jeiglesias.com.
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