®

Check for
updates

Multiscale Network Followed Network
Model for Retinal Vessel Segmentation

Yicheng Wu', Yong Xia'®™, Yang Song?, Yanning Zhang', and Weidong Cai?

! School of Computer Science and Engineering, Northwestern Polytechnical
University, Xi’an 710072, People’s Republic of China
yxia@nwpu.edu.cn
2 School of Information Technologies, University of Sydney, Sydney,
NSW 2006, Australia

Abstract. The shape of retinal blood vessels plays a critical role in the
early diagnosis of diabetic retinopathy. However, it remains challenging
to segment accurately the blood vessels, particularly the capillaries, in
color retinal images. In this paper, we propose the multiscale network
followed network (MS-NFN) model to address this issue. This model
consists of an ‘up-pool’ NFN submodel and a ‘pool-up’ NFN submodel,
in which max-pooling layers and up-sampling layers can generate multi-
scale feature maps. In each NFN, the first multiscale network converts
an image patch into a probabilistic retinal vessel map, and the follow-
ing multiscale network further refines the map. The refined probabilistic
retinal vessel maps produced by both NFNs are averaged to construct
the segmentation result. We evaluated this model on the digital reti-
nal images for vessel extraction (DRIVE) dataset and the child heart
and health study (CHASE_DB1) dataset. Our results indicate that the
NFN structure we designed is able to produce performance gain and
the proposed MS-NFN model achieved the state-of-the-art retinal vessel
segmentation accuracy on both datasets.
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1 Introduction

Diabetic retinopathy (DR) is one of the major ocular health problems world-
wide, the leading cause of visual impairment in the working-age population in
developed countries [1]. The early diagnosis of DR, in which retina vessel seg-
mentation plays an important role, is critical for best patient care.

A number of automated retinal vessel segmentation algorithms have been
published in the literature. Many of them formulate the segmentation into a
retinal pixel classification problem, in which various visual features are extracted
to characterize each pixel. As an typical example, Lupascu et al. [2] jointly
employed filters with different scales and directions to extract 41-dimensional
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visual features and applied the AdaBoosted decision trees to those features for
vessel segmentation. Meanwhile, the prior knowledge about retinal vessels is
indispensable to address the difficulties caused by intensity inhomogeneity and
low contrast. For instance, Staal et al. [3] introduced the vessel centerlines and
other heuristics to the segmentation process, and Lam et al. [4] incorporated the
shape prior into vessels detection.

Recent years have witnessed the success of deep learning in medical image
processing, including the retinal vessel segmentation. Liskowski et al. [5] trained
a deep neural network using the augmented blood vessel data at variable scales
for vessel segmentation. Li et al. [6] adopted an auto-encoder to initialize the
neural network for vessel segmentation without preprocessing retinal images.
Ronneberger et al. [7] proposed a fully convolutional network (FCN) called U-
Net to segment retinal vessels.

Despite their success, these algorithms still generate less accurate segmen-
tation of retinal vessels, particularly the capillaries, which have smaller diame-
ter and lower contrast than major arteries and veins in retinal images. Since
the regions that contain vessels with different diameters have diverse visual
appearance (see Fig. 1), we suggest applying multiscale models to segment multi-
width retinal vessels. Furthermore, although deep convolutional neural networks
(DCNNSs) have a strong ability to learn image representations, they can hardly
incorporate the spatial information of pixels into the pixel classification process,
resulting in poor connectedness of the segmented retinal vessels. Traditionally,
we can apply a conditional random field (CRF) to the pixel features learned by
a DCNN to address this drawback, but this makes it impossible to learn pixel
features and the classifier in a unified network.

-

Fig. 1. A fundus retinal image: (upper right) the macular area, (bottom right) optic
disc region, (upper left) low contrast patch and (bottom left) high contrast patch.

Therefore, we propose a multiscale network followed network (MS-NFN)
model for blood vessel segmentation in color retinal images. The main unique-
ness of this model includes: (1) there are an ‘up-pool’ NFN submodel, in which
up-sampling layers are in front of max-pooling layers, and a ‘pool-up’ NFN
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submodel, in which max-pooling layers are in front of up-sampling layers; (2)
each NFN submodel consists of two identical multiscale networks: one, with an
auxiliary loss, converts an image patch into a probabilistic retinal vessel map,
and the other further refines the map. Each multiscale network has a U-Net
structure, in which up-sampling layers and max-pooling layers generate multi-
scale feature maps. The refined probabilistic retinal vessel maps produced by
both NFNs are averaged to construct the segmentation result. We evaluated
our MS-NFN model on the digital retinal images for vessel extraction (DRIVE)
dataset [3] against eight algorithms and on the child heart and health study
(CHASE_DBI1) dataset [8,9] against five algorithms, and achieved the current
state-of-the-art performance.

2 Datasets

The DRIVE dataset comes from a diabetic retinopathy screening program initi-
ated in Netherlands. It consists of 20 training and 20 testing fundus retinal color
images of size 584 x 565. These images were taken by optical camera from 400
diabetic subjects, whose ages are 25-90 years. Among them, 33 images do not
have any pathological manifestations and the rest have very small signs of dia-
betes. Each image is equipped with the mask and ground truth from the manual
segmentation of two experts.

The CHASE_DBI1 dataset consists of 28 retinal images taken from both eyes
of 14 school children. Usually, the first 20 images are used for training and
the rest 8 images are for testing [6]. The size of each image is 999 x 960. The
binary field of view (FOV) mask and segmentation ground truth were obtained
by manual methods [10].

3 Method

The proposed MS-NFN model (see Fig.2) can be applied to retinal vessel seg-
mentation in five steps: (1) retinal image preprocessing, (2) patch extraction, (3)
feeding each patch simultaneously into the ‘up-pool’ NFN and ‘pool-up’ NFN
for segmentation, (4) averaging the output of both NFNs, and (5) segmentation
result reconstruction. We now delve into the major steps.

3.1 Images Pre-processing and Patch Extraction

Each color retinal image is converted into an intensity image to avoid the impact
of hue and saturation. Then, the contrast limited adaptive histogram equal-
ization (CLAHE) algorithm [11] and gamma adjusting algorithm are used to
improve image contrast and suppress noise. Next, partly overlapped patches of
size 48 x 48 are randomly extracted in each image, resulting in 190,000 patches
from the DRIVE dataset and 400,000 patches from the CHASE_DB1 dataset
for training our model.
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Fig. 2. Illustration of the MS-NFN model-based retinal vessel segmentation

3.2 Training Two NFN Models

Extracted patches are fed into two NFN submodels for independent training.
Each NFN (see Fig.3) consists of two identical multiscale networks: the first
network inputs an extracted patch and outputs the probabilistic map of retinal
vessels, and the second network inputs the probabilistic vessel map generated
by the first one and then outputs a refined probabilistic vessel map. The NFN is
trained in an ‘end-to-end’ manner to minimize the cross entropy loss L. The first
network also has an auxiliary cross entropy loss Ls, which is added to the back
propagated error with a weight of A =0.8. The mini-batch stochastic gradient
descent (mini-batch SGD) algorithm with a batch size of 32 is adopted as the
optimizer. The maximum iteration number is empirically set to 100 and the
learning rate is set to 0.01.
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Fig. 3. Illustration of the NFN submodel-based patch segmentation.

The ‘up-pool’ NFN consists of two multiscale ‘up-pool’ networks (see Fig. 4
(top)), each having a symmetrical architecture and containing consequently an
up-sampling and max-pooling module, a U-Net module [7], and another up-
sampling and max-pooling module. Similarly, the ‘pool-up’ NFN consists of two
multiscale ‘pool-up’ networks (see Fig. 4 (bottom)), each containing consequently
a max-pooling and up-sampling module, a U-Net module, and another max-
pooling and up-sampling module.
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3.3 Testing the MS-NFN Model

Each test image is first pre-processed using the method described in the Sub-
sect. 3.1. Then, partly overlapped patches of size 48 x 48 are extracted with a
stride of 5 along both horizontal and vertical directions. Next, each patch is
fed into two NFN submodels for segmentation, and the obtained probabilistic
vessel maps are averaged. Since the patches are heavily overlapped, each pixel
may appear in multiple patches, and its probabilistic values in these patches are
further averaged. Finally, the averaged probabilistic vessel map is binarized with
a threshold 0.5 to form the retinal vessel segmentation result.
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Fig. 4. Architecture of the ‘up-pool’ network (top) and ‘pool-up’ network (bottom)

4 Results

Performance Gain Caused by NFN: To demonstrate the performance gain
caused by the NFN structure, we implemented a MS model, which has a sim-
ilar architecture to MS-NFN except that each NFN is replaced with a single
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multiscale network. Figures5 and 6 show an example test image from DRIVE
and CHASE_DBI, respectively, together with the segmentation results obtained
by using the MS model and proposed MS-NFN model, and the ground truth.
It reveals that our MS-NFN model, with the NFN structure, can detect more
retinal vessels than the MS model.

Comparison to Existing Methods: Tables 1 and 2 give the average accuracy,
specificity, sensitivity and area under the ROC curve (AUC) obtained by apply-
ing several existing retinal vessel segmentation methods, the MS model, and
the proposed MS-NFN model to the DRIVE dataset and CHASE_DBI1 dataset,
respectively. It shows that the overall performance of our MS-NFN model is
superior to those competing methods on both datasets. Particularly, our method
achieved a substantially improved AUC value (i.e., 0.60% higher than the sec-
ond best AUC on DRIVE and 1.09% higher than the second best AUC on
CHASE_DBI1). Considering the size of each retinal image, such improvement
leads to a large number of retinal vessel pixels being correctly classified.

Fig. 5. A test image from the DRIVE dataset (1° column), the segmentation results
obtained by using the MS model (2"¢ column) and our MS-NFN model (3"¢ column),
and ground truth (4" column).

Table 1. Performance of nine segmentation methods on the dataset.

Method AUC (%) | Accuracy (%) | Specificity (%) | Sensitivity (%)
Fraz et al. [8] (2012) 97.47 94.80 98.07 74.06
Mapayi et al. [12] (2015) 97.11 95.00 96.68 74.28
Azzopardi et al. [13] (2015) 96.14 94.42 97.04 76.55
Roychowdhury et al. [14] (2015) | 96.72 94.94 97.82 73.95
Li et al. [6] (2016) 97.38 95.27 98.16 75.69
Orlando et al. [15] (2017) 95.07 N.A 96.84 78.97
Dasgupta et al. [16] (2017) 97.44 95.33 98.01 76.91
MS Model 97.98 95.62 97.99 79.34
Proposed (MS-NFN) 98.07 95.67 98.19 78.44
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Fig. 6. A test image from the CHASE_DB1 dataset (1°* column), the segmentation
results obtained by using the MS model (2"¢ column) and our MS-NFN model (3"
column), and ground truth (4" column).

Table 2. Performance of six segmentation methods on the CHASE_DBI1 dataset.

Method AUC (%) | Accuracy (%) | Specificity (%) | Sensitivity (%)
Fraz et al. [8} (2012) 97.12 94.69 97.11 72.24
Azzopardi et al. [14] (2015) | 94.87 93.87 95.87 75.85
Li et al. [6] (2016) 97.16 95.81 97.93 75.07
Orlando et al. [15] (2017) 95.24 N.A 97.12 72.77
MS Model 98.07 96.26 98.25 76.36
Proposed (MS-NFN) 98.25 96.37 98.47 75.38

Computational Complexity: It took more than 16 h to train the proposed
MS-NFN model on the DRIVE dataset and more than 30 h to train it on the
CHASE_DB1 dataset (Intel Xeon E5-2640 V4 CPU, NVIDIA Titan Xp GPU,
512 GB Memory, and Keras 1.1.0). However, applying our MS-NFN model to
retinal vessel segmentation is relatively fast, as it took less than 10 s to segment
a 584 x 565 retinal image on average.

5 Conclusions

We propose the MS-NFN model for retinal vessel segmentation and evaluated it
on the DRIVE and CHASE DBI1 datasets. Our results indicate that the NFN
structure we designed is able to produce performance gain and the proposed
MS-NFN model achieved, to our knowledge, the most accurate retinal vessel
segmentation on both datasets.
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