
Uniqueness-Driven Saliency Analysis
for Automated Lesion Detection

with Applications to Retinal Diseases

Yitian Zhao1(B), Yalin Zheng2, Yifan Zhao3, Yonghuai Liu4, Zhili Chen5,
Peng Liu1, and Jiang Liu1

1 Cixi Institute of Biomedical Engineering, Ningbo Institute of Industrial Technology,
Chinese Academy of Sciences, Cixi, China

yitian.zhao@nimte.ac.cn
2 Department of Eye and Vision Science, Liverpool University, Liverpool, England

3 School of Aerospace, Transport and Manufacturing, Cranfield University,
Cranfield, England

4 Department of Computer Science, Aberystwyth University, Aberystwyth, Wales
5 School of Information and Control Engineering, Shenyang Jianzhu University,

Shenyang, China

Abstract. Saliency is important in medical image analysis in terms of
detection and segmentation tasks. We propose a new method to extract
uniqueness-driven saliency based on the uniqueness of intensity and
spatial distributions within the images. The main novelty of this new
saliency feature is that it is powerful in the detection of different types
of lesions in different types of images without the need of tuning parame-
ters for different problems. To evaluate its effectiveness, we have applied
our method to the detection lesions of retinal images. Four different
types of lesions: exudate, hemorrhage, microaneurysms and leakage from
7 independent public retinal image datasets of diabetic retinopathy and
malarial retinopathy, were studied and the experimental results show
that the proposed method is superior to the state-of-the-art methods.

Keywords: Saliency · Uniqueness · Computer aided-diagnosis
Retinopathy

1 Introduction

The accurate identification of suspicious regions such as lesions in medical images
is significant in the development of computer aided-diagnosis systems. Many dif-
ferent strategies have been developed towards automated detection of lesions in
addressing different problems. However, these strategies often work on single type
of lesions with careful parameter optimization and are unlikely to work for other
types of lesions without problem specific optimization. It is therefore essential
to develop generic algorithms that can have accurate and reliable performance
in the detection of multiple lesions without handcrafted parameters.
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In this work, we propose a new uniqueness-driven saliency approach for the
detection of different types of lesions. The concept of saliency is that an object
stands out relative to its neighbors by virtue of its uniqueness or rarity features
[1,2]. Saliency plays an important role in describing the tendency of those regions
that may contain consequential matters for diagnostic purposes to draw the
attention of human experts [3]. To evaluate its effectiveness, we aim to segment
four different types of retinal lesions related to diabetic and malarial retinopathy:
exudates (EX), microaneurysms (MA), and hemorrhages (HA) in retinal color
fundus (CF) images [4], and leakage (LK) in fluorescein angiogram (FA) [3]. MA
and HM are referred to as dark lesion while EX and LK as bright lesion.

Diabetic retinopathy (DR) is a leading cause of vision impairment and loss
in the working age population, and early diagnosis of DR is important for the
prevention of vision loss [4]. The severity of DR is usually determined based on
feature-based grading by identifying features such as MA, HA and EX in color
fundus images, and thus automated detection of these features is essential in
the automated diagnosis of DR [5,6]. On the other hand, malarial retinopathy
is believed as the surrogate for the differential diagnosis of cerebral malaria,
which is still a major cause of death and disability in children in sub-Saharan
Africa [3], and LK in angiography is an important sign to determine the activities
and development of lesions. Manual grading of these lesions is impractical given
the scale of the problem and the shortage of trained professionals. Automated
detection of these lesions is ideal to the early diagnosis and prevention of these
challenges in a cost-effective way. However, the challenges are still open to be
addressed [7].

A particular strength of the proposed method compared to previous work is
that it has undergone rigorous quantitative evaluation on seven independent pub-
licly available datasets including CF and FA images. The experimental results
demonstrate its effectiveness and potential for wider medical applications.

2 Method

This work was inspired by the findings of Perazzi et al. [8] that the uniqueness
of a component may be used to reveal the rarity of an image component. The
relative intensity or spatial distribution of intensity are commonly used prop-
erties to investigate saliency [1,8]. In particular, Cheng et al. [1] suggest that
the spatial variance of color can measure whether an element is salient: a lower
variance usually implies more salient.

Saliency at Coarse Scale: In order to reduce the computational cost,
saliency is first derived from superpixels of an image under consideration by
using the SLIC superpixel algorithm with default parameter settings [9]. With-
out loss of generality, we assume that N superpixels are generated, the color of
any superpixel i and j, 1 ≤ i, j ≤ N , are ci, cj while their positions are pi and
pj . The uniqueness saliency Ui of superpixel i is then defined by combining the
uniqueness in both the intensity and the spatial distribution domains:

Ui = Ii · exp(−k · Di), (1)
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where Ii and Di indicates the uniqueness of superpixel i in the intensity and spa-
tial distribution domain respectively. Here an exponential function is employed
to emphasize Di that is of higher significance and greater diagnostic capability
than the intensity measurement Ii [8]. The parameter k represents the strength
of the spatial weighting, and is set as 6 and −6 for dark and bright lesion detec-
tion, respectively. The uniqueness in the intensity domain Ii of superpixel i can
be obtained by computing the rarity compared to all the other superpixels j:

Ii =
N∑

j=1

‖ci − cj‖2 · wI(pi,pj). (2)

The local weighting function wI(pi,pj) is introduced here so that global
and local contrast can be effectively combined with control over the influ-
ence radius. A standard Gaussian function is utilized to generate the
local contrast in terms of geometric distances between superpixel i and j:
wI(pi,pj) = 1

ZI
i
exp{−‖pi−pj‖2

2σ2
p

}, where standard deviation σp controls the range
of the uniqueness operator from 0 to 1 (where 1 = global uniqueness). The nor-
malization term ZI

i ensure that
∑N

j=1 wI(pi,pj) = 1. Equation (1) is decom-
posed by factoring out:

Ii = c2i

N∑

j=1

wI(pi,pj)

︸ ︷︷ ︸
1

−2ci

N∑

j=1

cjw
I(pi,pj)

︸ ︷︷ ︸
Gaussian blur cj

+

N∑

j=1

c2jw
I(pi,pj)

︸ ︷︷ ︸
Gaussian blur c2j

. (3)

It can be seen that
∑N

j=1 cjw
I(pi,pj) of second and third term can be regarded

as the Gaussian blurring kernel on intensity cj and its square c2j , respectively.
Similarly, the uniqueness of spatial distribution Di can be computed as:

Di =
N∑

j=1

‖pj − µi‖2 · wD(ci, cj), (4)

where μi =
∑N

j=1 pjw
D(ci, cj) defines the weighted mean position of color ci,

wD(ci, cj) indicates the similarity between color ci and cj . Similar to Eq. (2), the
color similarity weight is also a Gaussian wD(ci, cj) = 1

ZD
i

exp{−‖ci−cj‖2

2σ2
c

}, where
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ZD
i can be defined similar to ZI

i while σc controls the sensitivity of the spatial
distribution: larger values of σc indicate increased values of spatial distribution,
and vice versa. Equation (4) can be expanded as:

Di =
N∑

j=1

p2
jw

D(ci, cj) − 2μi

N∑

j=1

pjw
D(ci, cj)

︸ ︷︷ ︸
μi

+μi
2

N∑

j=1

wD(ci, cj)

︸ ︷︷ ︸
1

=
N∑

j=1

p2
jw

D(ci, cj)

︸ ︷︷ ︸
Gaussian blur p2

j

− μ2
i︸︷︷︸

blur pj

. (5)

Again, both terms
∑N

j=1 pjw
D(ci, cj) and μ2

i can be effectively evaluated by
Gaussian blurring. After determining Ii and Di, the uniqueness-based saliency
Ui can be calculated by using Eq. (1).

Saliency at Fine Scale: After coarse level estimation, the saliency at each
pixel is temporarily assigned the saliency value of the superpixel it belongs to.
Further refinement is made by introducing the concept of bilateral filter. That
is, Su =

∑M
v=1 wuvUv, where M is the total number of pixels in the image, U

is the saliency map at coarse scale, and the Gaussian weight wuv is defined as
wuv = 1

Zu
exp(− 1

2α‖cu − cv‖2 + β‖pu − pv‖2), where Zu can be defined similar
to ZD

i . In other words, a weighted Gaussian filter which concerns both color and
position is applied on the saliency map U at coarse scale, in order to achieve the
translation of per-superpixel saliency to per-pixel saliency. The trade-off between
intensity and position is controlled by α and β, which in the present work were
both set to 0.01. The result is that, the final saliency map highlights salient
object regions of interest by suppressing the background of the image.

Fig. 1. Illustrative microaneurysm detection result on example images from four
datasets: (a) RC-RGB-MA; (b) DiaretDB1; (c) ROC; (d) e-ophtha. The yellow circles
indicate the location of MAs.
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Table 1. Microaneurysms detection result: sensitivities of different methods at the
predefined rates of false positives per image in four different datasets.

Dataset Method 1/8 1/4 1/2 1 2 4 8 FS

e-ophtha Dashtbozorg et al. [10] 0.358 0.417 0.471 0.522 0.558 0.605 0.638 0.510

Zhang et al. [11] 0.170 0.240 0.320 0.440 0.540 0.630 0.740 0.440

Proposed 0.325 0.387 0.443 0.501 0.551 0.637 0.738 0.512

ROC Wang et al. [12] 0.273 0.379 0.398 0.481 0.545 0.576 0.598 0.464

Dai et al. [13] 0.219 0.257 0.338 0.429 0.528 0.598 0.662 0.433

Proposed 0.254 0.335 0.388 0.420 0.540 0.630 0.725 0.472

DiaretDB1 Seoud et al. [5] 0.140 0.175 0.250 0.323 0.440 0.546 0.642 0.359

Dai et al. [13] 0.035 0.058 0.112 0.254 0.427 0.607 0.755 0.321

Proposed 0.163 0.201 0.279 0.365 0.501 0.612 0.723 0.406

RC-RGB-MA Dashtbozorg et al. [10] 0.541 0.591 0.618 0.662 0.697 0.704 0.714 0.647

Proposed 0.512 0.588 0.621 0.673 0.704 0.735 0.741 0.653

3 Experimental Evaluation

In practice, the large vessels and the optic disc may also be detected as ROIs,
as these regions in retinal images are conspicuous objects, as shown in Figs. 1,
2, 3 and 4. To detect the exact lesions there is a need to remove them from the
produced saliency map. In this work, the vessel segmentation outlined in [14]
and the optic disc detection method discussed in [15] were employed.

We have thoroughly evaluated the proposed method on seven publicly avail-
able retinal image datasets. These are: the Retina Check project managed by
Eindhoven University of Technology (RC-RGB-MA) [10]; the DiaretDB1 [16];
the Retinopathy Online Challenge training set (ROC) [4]; the e-ophtha [17];
the Messidor [18]; the Diabetic Macular Edema (DME-DUKE) [19] dataset col-
lected by Duke University; and the Malarial Retinopathy dataset collected by
the University of Liverpool (LIMA) [3].

3.1 Dark Lesion Detection

A large number of studies, i.e., ([5,6,11]) have detected lesions on prevalence of
performance defined at image level, and it is difficult to categorize the pixels as
true positives and false negatives. In this study, the sensitivity values against
the average number of false positives per image (FPI) was used to measure the
MA detection performance [4], and sensitivity values for FPI rates of 1/8, 1/4,
1/2, 1, 2, 4, and 8 were used. A final score (FS) was computed by averaging the
sensitivity values obtained at each of these seven predefined FPIs [20].
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Figure 1 shows that the proposed method has successfully detected the MA
regions as salient. Table 1 compares the performances of MA detection of the
proposed method and existing methods in terms of sensitivity against FPI on
the e-ophtha, ROC, DiaretDB1, and RC-RGB-MA datasets. Due to the page
limit, we provide readers with the performance from only two most recent MA
detection methods: this is not intended to be taken as exhaustive. As can be
observed, the proposed method outperforms both the state-of-the-art methods
on all four datasets in terms of final score.

Fig. 2. Illustrative hemorrhage detection results on two randomly-selected
DiaretDB1 images. (a) (c) Green channel images; (b) (d) Proposed saliency map.

Table 2. Hemorrhages detection performance: sensitivity scores at image level and
pixel level on the DiaretDB1 dataset.

Quellec et al. [21] Gondal et al. [22] Zhou et al. [23] Proposed

Image level 0.947 0.972 0.944 0.981

Pixel level 0.710 0.720 - 0.788

The ability of the proposed method to detect hemorrhages is demonstrated
in Fig. 2. Evaluation was undertaken at image and pixel level respectively. At
the image level, the intention is to reveal whether hemorrhage in an image can
be detected or not. At the pixel level, the goal is to judge the detection accuracy
in terms of overlapping. Table 2 demonstrates the sensitivity values achieved by
the proposed method and the selected competitors over the DiaretDB1 dataset.
It can be seen that the proposed method achieves the best performance at both
image level and lesion level.

3.2 Bright Lesion Detection

We have evaluated the exudate detection method using three datasets:
DiaretDB1, e-ophtha, and Messidor. Both the DiaretDB1 and the e-ophtha
datasets provide a lesion map generated by experts, while the Messidor dataset
provides a DR diagnostic for each image, but without manual annotation on exu-
date contours. However, Messidor contains information on the risk of macular
edema, and the presence of exudates has been used to grade the risk of macular
edema. Therefore, it is an important resource given the number of images avail-
able for the validation of the presence of exudate. Figure 3 indicates the proposed
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saliency detection method with application to exudate detection. Table 3 shows
the evaluation results obtained by the proposed method and four state-of-the-art
exudate detection methods: the area under the receiver operating characteristics
curve (AUC) is employed to measure the performances. As can be observed, the
proposed method achieves the best AUC scores, with scores of 0.952, 0.950, and
0.941, respectively in DiaretDB1, e-ophtha, and Messidor. It is worth noting that
the AUC scores were computed at image level (presence of exudate).

Fig. 3. Exudate detection results of the proposed method on example images from
three datasets: (a) Messidor; (b) DiaretDB1; (c) e-ophtha.

Table 3. Exudates detection performance: AUC scores on three datasets. Note that,
the validation on the Messidor was performed in at the image level.

Zhang et al.

[11]

Giancardo et al. [6] Roychowdhury et al. [24] Quellec et al. [21] Proposed

DiaretDB1 0.950 0.930 0.870 0.809 0.952

e-ophtha 0.950 0.870 - - 0.950

Messidor 0.930 0.900 0.904 - 0.941

In this work, the performance of the proposed method on leakage detection
was obtained on two FA image datasets: DME-DUKE with DR pathology, and
LIMA with MR pathology. Table 4 shows the performances of different methods
in detecting leakage sites in terms of sensitivity, specificity, and AUC at the
pixel level. It can be observed that the performances of our proposed method
are better than those of the compared methods.
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Fig. 4. Leakage detection results on example images from the DUKE-DME and LIMA
datasets. (a), (c) Original images; (b), (d) Proposed saliency map.

Table 4. Leakage detection performance at pixel level: sensitivity, specificity, and
AUC scores over DME-DUKE, and LIMA datasets.

DME-DUKE LIMA

Sensitivity Specificity AUC Sensitivity Specificity AUC

Rabbani et al. [19] 0.69 0.91 0.80 0.81 0.87 0.84

Zhao et al. [3] 0.78 0.94 0.86 0.93 0.96 0.94

Proposed 0.81 0.93 0.87 0.95 0.95 0.95

4 Conclusions

Development of the proposed framework was motivated by medical demands for a
tool to measure various types of lesions in retinal images. The accurate detection
of retinal lesions is a challenging problem due to image intensity inhomogeneity
and the irregular shapes of lesions, with substantial variability in appearance.
To address this problem, a novel saliency detection method is proposed, based
on the uniqueness feature derived from the intensity and spatial distribution
of components of the image. To the best of our knowledge, this is the first
work on the automated detection of hemorrhages, microaneurysms, exudate, and
leakage from both retinal color fundus images and fluorescein angiograms. The
experimental results, based on seven publicly accessible DR and MR datasets,
show that our method outperforms the most recently proposed methods. The
proposed method is not only capable of identifying the presence of lesions in an
image, but also has the ability to measure the size of such lesions.
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