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Abstract. In diffusion MRI, fiber tracts, represented by densely dis-
tributed 3D curves, can be estimated from diffusion weighted images
using tractography. The spatial geometric structure of white matter fiber
tracts is known to be complex in human brain, but it carries intrinsic
information of human brain. In this paper, inspired by studies of liquid
crystals, we propose tract-based director field analysis (tDFA) with total
six rotationally invariant scalar indices to quantify local geometric struc-
tures of fiber tracts. The contributions of tDFA include: (1) We propose
orientational order (OO) and orientational dispersion (OD) indices to
quantify the degree of alignment and dispersion of fiber tracts; (2) We
define the local orthogonal frame for a set of unoriented curves, which
is proved to be a generalization of the Frenet frame defined for a single
oriented curve; (3) With the local orthogonal frame, we propose splay,
bend, and twist indices to quantify three types of orientational distortion
of local fiber tracts, and a total distortion index to describe distortions of
all three types. The proposed tDFA for fiber tracts is a generalization of
the voxel-based DFA (vDFA) which was recently proposed for a spheri-
cal function field (i.e., an ODF field). To our knowledge, this is the first
work to quantify orientational distortion (splay, bend, twist, and total
distortion) of fiber tracts. Experiments show that the proposed scalar
indices are useful descriptors of local geometric structures to visualize
and analyze fiber tracts.

1 Introduction

Diffusion MRI (dMRI) provides a unique window to non-invasively reveal
anatomical connections (i.e., fiber tracts) and white matter tissue properties
in human brain [3]. In dMRI, a typical processing pipeline before statistical
analysis is: (1) fit a diffusion model (e.g., diffusion tensor imaging (DTI) [2]) to
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measured diffusion signals in each voxel; (2) calculate various voxel-wise scalar
indices from the model parameters; (3) calculate local fiber directions in each
voxel based on the model parameters, and then perform tractography. Scalar
indices from diffusion models in step 2 are to quantify different tissue properties
at different levels. For example, at the voxel level, fractional anisotropy (FA),
generalized FA, return-to-origin probability, mean-squared displacement, and
orientation dispersion index are indices for tissue properties inside a single voxel
in DTI, Q-ball imaging [11], spherical polar Fourier imaging [6], NODDI [13], etc.
At the local neighborhood level, gradient norm [8], sheet probability index [10],
and orientational distortion [5] are indices for tissue properties within a local
neighborhood.

Fiber tracts estimated by tractography are curves densely distributed in the
3D space. The spatial geometric structure of fiber tracts is known to be very
complex in human brain [3]. In a local spatial region, typical geometric structures
of fiber tracts include splay (aka diverge, converge, or fanning), bend, twist,
crossing, kissing, etc. Grid and sheet structures were also reported in some areas
in human brain [10,12]. See Fig. 1 for a demonstration of splay, bend, and twist
of fiber tracts. Compared with various voxel-wise indices, only a few tract-based
indices have been proposed. Savadjiev et al. [9] proposed the total dispersion
index for each point in a tract. Curvature and torsion based on the Frenet frame
along the curve are two famous features of a single tract [1,4]. However, the
Frenet frame and its features are not designed for a set of curves, thus they
cannot quantify local geometric structures of fiber tracts shown in Fig. 1.

Cheng et al. [5] proposed a framework called director field analysis (DFA) to
quantify orientational order, dispersion of spherical functions, and orientational
distortion (splay, bend, twist, and total distortion) of a spherical function field at
the local neighborhood level. Since the DFA in [5] was developed for a spherical
function field, we call it as voxel based DFA (vDFA). vDFA does not work for
fiber tracts. In this paper, inspired by studies of liquid crystals [7], we propose
tract-based director field analysis (tDFA) which generalizes vDFA in [5] to fiber
tracts. tDFA is not proposed to replace vDFA, but adopts methods and concepts
in vDFA to fiber tracts. In tDFA, we define total 6 scalar indices at each point in
fiber tracts, where orientational order and dispersion quantify the alignment and
dispersion of fiber tracts, and splay, bend, twist and total orientational distortion
quantify local orientational distortion of fiber tracts. tDFA is applied directly
on fiber tracts after tractography. To our knowledge, this is the first work to
quantify orientational distortion of fiber tracts (i.e., splay, bend and twist).

2 Method

2.1 Directors, Oriented Curves and Unoriented Curves

A director, borrowed from studies of liquid crystals [7], is defined as a vector v
that is equivalent to its negative −v [5]. A director v can be represented as a
dyadic tensor vvT without sign ambiguity. A local fiber direction in a voxel (i.e.,
a peak of the ODF in that voxel) is a director by definition. “Sign ambiguity”
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Fig. 1. Demonstration of three types of distortions of fiber tracts.

also happens for fiber tracts. A fiber tract is mathematically a differentiable
curve in R

3 with two endpoints. A differentiable curve can be parameterized as
an oriented curve C : [0, 1] �→ R

3, where C(t) is differentiable and C(0) and
C(1) are two endpoints. If we set γ(t) = C(1 − t) (i.e., inverse the orientation
of the curve), then γ : [0, 1] �→ R

3 is a new parameterization with the opposite
orientation, i.e., γ(0) = C(1) and γ(1) = C(0). Note that these two oriented
curves actually represent the same unoriented curve in geometry, however, for
a point C(t) (i.e., γ(1 − t)) in the curve, the two tangent vectors in these two
parameterization have opposite directions, i.e., TC(t) = −Tγ(1−t). Thus, tangent
vectors of fiber tracts are actually directors.

The sign ambiguity of fiber tracts is not a problem for some cases. For exam-
ple, the curvature and torsion do not change under the above two parameteri-
zation. However, it is indeed a crucial problem if we would like to compare two
tangent vectors. Thus, we will use tools of directors in [5] for calculation to avoid
this problem. The difference of two directors v1 and v2 in the director repre-
sentation, denoted as Diffd, is Diffd(v1, v2) = s1v1 − s2v2, where si = ±1 such
that s1s2v

T
1 v2 ≥ 0 [5].

2.2 Orientational Order and Dispersion of Fiber Tracts

Considering a set of fiber tracts {Ci} which are curves densely distributed in R
3,

for each point x ∈ Ci, inspired by liquid crystals [5,7], we define orientational
order index (OO) as

OO =
∑

y∈Ω(x)

w(y ,x )
3(u1(y)Tu1(x ))2 − 1

2
, (1)

where y is a point in a curve Cj in a spatial neighborhood Ω(x ) of x , u1(x )
and u1(y) are unit norm tangent vectors of curves at x and y , w(y ,x )
is a spatial weighting function (e.g., uniform or Gaussian weighting) and∑

y∈Ω(x) w(y ,x ) = 1. See Fig. 2. We have OO ∈ [−0.5, 1]. Then, we define
the orientational dispersion index (OD) as OD = 1 − OO. Thus, OD ∈ [0, 1.5].
If u1(y) is parallel to u1(x ), ∀y ∈ Ω(x ), i.e., the least dispersion case, then
OO = 1 and OD = 0 at x . If u1(y) is orthogonal to u1(x ), ∀y ∈ Ω(x ), i.e., the
most dispersion case, then OO = −0.5 and OD = 1.5 at x . Note that the sign
ambiguity of tangent vectors u1(y) and u1(x ) dose not change the values of OO
and OD. In practice, we normally set Ωx as a ball centered at x with a radius
r = 4mm, considering typical isotropic voxel size of a DW image is 2 mm. Note
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that the total dispersion in [9] is defined as the mean of differences between
tangent vectors in a circle and u1(x ), while our definition of OD is inspired by
the order parameter in liquid crystals [5,7].

Fig. 2. Demonstration of tract-based DFA at a point x , denoted as the red point. We
use tubes, instead of traditional arrows, to denote tangent vectors because of the sign
ambiguity of the unoriented curves and tangent vectors. Ωx is a local neighborhood
of x , denoted as the grey sphere. The yellow points are within Ωx , and their tangent
vectors are used to calculate OO and OD, and construct the second and third directors
in the local orthogonal frame. The pink plane is the orthogonal plane of red director
u1(x ). The red, green, and blue tubes are the 3 directors {u1(x ),u2(x ),u3(x )} in the
local orthogonal frame. The 6 purple points {x ± kui} alone these 3 directors in the
local orthogonal frame are used to calculate the distortion indices.

2.3 Local Orthogonal Frame for a Set of Unoriented Curves

Curvature and torsion are typical features of a single curve based on the Frenet
frame [1]. However, the Frenet frame has several limitations: (1) It requires a
direction (i.e., orientation) of a curve; (2) It is defined only for a single curve, not
for a set of curves; (3) For a straight line, the Frenet frame is not well defined
because the curvature of straight lines is 0.

We propose a local orthogonal frame at each point x of fiber tracts. The
local orthogonal frame has three directors. The first director, denoted as u1(x ),
is the tangent vector at x , and the other two directors are in the orthogonal
plane of the first director. We project all tangent vectors of fiber tracts in a local
neighborhood Ωx of x onto the orthogonal plane, and define the covariance
matrix of the projected directors as
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Qx =
∑

y∈Ωx

w(y , x )u1,⊥(y)uT
1,⊥(y), where u1,⊥(y) = u1(y) − (uT

1 (y)u1(x ))u1(x ).

(2)

Then we set the second director u2(x ) as the eigenvector associated with
the largest eigenvalue of Qx , i.e., the principal component in PCA. In this way,
u2(x ) indicates the direction of the largest change of u1(x ) in the orthogonal
plane. Then, the third director is the cross product of the first two directors. See
Fig. 2. We prove in Proposition 1 that when Ωx tends infinitesimally small, the
local orthogonal frame will converge to the Frenet frame.

Proposition 1. Let {Ci} be a set of differentiable curves. Let x ∈ C1 be a
point in C1, and u1(x) is the tangent vector at x in C1. Assume x is not a
crossing point. Given a local ball Ωx = {y | ‖y− x‖ ≤ r} with a radius r, let the
constructed local orthogonal frame be {u1(x),u2(x),u3(x)}. For x ∈ C1, let the
Frenet frame be {u1(x), v2(x), v3(x)}. The vectors in two frames all have unit
norm. Then we have limr→0(u2(x)Tv2(x))2 = 1, limr→0(u3(x)Tv3(x))2 = 1.

2.4 Orientational Distortions (Splay, Bend, and Twist)

Based on distortion analysis of liquid crystals [7], there are 3 types of orienta-
tional distortions as showed in Fig. 1. (1) splay: bending occurs perpendicular to
the director; (2) bend: bending is parallel to the director; (3) twist: neighboring
directors are rotated with respect to one another, rather than aligned. Inspired
by liquid crystals [5,7], after we obtain the local orthogonal frame for each point
in tracts, we define at each point three scalar indices to describe the three types
of local distortions, and a total distortion index:

Splay index: s =
√

(uT
2

∂u1
∂u2

)2 + (uT
3

∂u1
∂u3

)2, (3)

Bend index: b =
√

(uT
2

∂u1
∂u1

)2 + (uT
3

∂u1
∂u1

)2, (4)

Twist index: t =
√

(uT
2

∂u1
∂u3

)2 + (uT
3

∂u1
∂u2

)2, (5)

Total distortion index: d =
√

s2 + b2 + t2, (6)

where ∂u1
∂ui

, i = 1, 2, 3, is the directional derivative of u1(x ) along ui(x ), i.e.,

∂u1

∂ui
≈ Diffd(u1(x + kui),u1(x − kui))

2k
, (7)

where k is small, and Diffd means the difference of two directors in the director
representation [5]. See Sect. 2.1. Since the director field is not continuous in
practice, we use an interpolation method to estimate u1(x+kui) and u1(x−kui)
from local neighborhoods of x + kui and x − kui. Let z = x ± kui, then we
estimate u1(z ) from its neighborhood tangent directors of tracts:

u1(z ) = arg min
u,λ

∑

y∈I(z )

‖λuuT − ws(y , z )wb(y ,x )u1(y)uT
1 (y)‖2, (8)
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where I(z ) is a neighborhood of z , ws(y , z ) = 1
Z‖y−z‖2 , wb(y ,x ) is the

bundle probability weight, and Z is the normalization factor such that∑
y∈I(z ) ws(y , z )wb(y , z ) = 1. we use the inverse distance weight so that if z is

a point in a tract, then ws = 1 and u1(z ) is just the tangent vector of the tract.
It can be proved that the interpolated u1(z ) is the actually the principal eigen-
vector of

∑
y∈I(z ) ws(y , z )wb(y , z )u1(y)uT

1 (y). We set I(z ) (i.e., I(x ±kui)) as
a ball with a radius of 2k, and k is normally set as 1 mm, half of the typical
voxel size of 2mm. If one would like to calculate indices using all points y from
all fiber bundles, then wb(y ,x ) = 1 as a constant. If one would like to calculate
indices using points y only from the same fiber bundle as x , then we may set
wb(y ,x ) as a pre-determined probability of fiber clustering, or we could simply
set wb(y ,x ) = 1 only if the angle between u1(y) and u1(x ) is smaller than
a threshold θ0 (e.g., 45◦), and wb(y ,x ) = 0, otherwise. If there is no specific
mention, we set wb(y ,x ) = 1 only if the angle is smaller than 45◦.

3 Experiments

Synthetic Data Experiments. We generated three synthetic fiber tracts
(splay, bend, and twist data) which demonstrate these three types of distor-
tions, and then calculated the proposed scalar indices for each point in the fiber
tracts. These scalar indices were used to color the fiber tracts. See Fig. 3. We
omit OO, because OO = 1 − OD. The first three rows in Fig. 3 show that the
proposed splay, bend, and twist indices completely separate these 3 datasets,
where only one among these 3 values is non-zero in each dataset. We also com-
bined fiber tracts in splay and bend data, then calculated these indices using
interpolation with points from all fiber bundles and with points only from the
same fiber bundle (angle threshold θ0 = 45◦). The last two rows in the figure
show that in a crossing area, it is better to use fiber tracts from the same bundle
to calculate bundle specific distortion indices. Note that increased OD happens
in crossing areas, compared with single bundle areas, and calculation of OD does
not require an interpolation.

Real Data Experiments. We performed tractography on a publicly available
dataset with a single subject from DIPY (dipy.org). The data has a single shell
with b = 2000 s/mm2 and 150 directions on the shell. The corpus callosum (CC)
was extracted based on diffusion ODF and deterministic tracking. Then, all six
indices were calculated from the fiber tracts of CC. Figure 4 shows the scalar
indices as colors of tracts. In the right subfigure, splay, bend, and twist values
are set as red, green and blue color channels, respectively. The bending areas of
CC are mainly in green, which means that the bend index is higher than slay
and twist indices in those bending areas. We can also see red (high splay values)
in fanning areas of CC, and blue (high twist values) when tracts are twisting in
the 3D space.

http://nipy.org/dipy/
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Fig. 3. Synthetic datasets of fiber tracts. Each row is a set of fiber tracts. The OD, splay,
bend, twist and total distortion indices are used to color the fiber tracts. Low/high
values are in blue/red color. The last two rows are crossing of bend and splay data
with two interpolation strategies.

Fig. 4. The corpus callosum of a real subject. Left: tracts are colored by OD values
in points, where low/high values are in blue/red colors. Right: tracts are colored by
splay, bend, and twist values in points, where splay, bend, and twist values are set as
red, green and blue color channels, respectively.
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4 Conclusion

We propose a unified mathematical framework called tract-based director field
analysis (tDFA) with six scalar indices to quantify local geometric structure of
fiber tracts. OD and OO are useful to quantify the degree of alignment and dis-
persion of fiber tracts; The distortion indices (i.e., splay, bend, twist and total
distortion) demonstrate good sensitivity in both synthetic datasets and a real
dataset on CC. To our knowledge, this is the first work to quantify orienta-
tional distortion (splay, bend, and twist) of fiber tracts. The proposed indices
are rotationally invariant, because they are calculated from intrinsic quantities
(i.e., local orthogonal frames) of tracts.
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