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Abstract. The thalamus is a deep grey matter structure that plays an
important role in propagating nerve impulses between subcortical regions
and the cerebral cortex. It is composed of distinct nuclei that have unique
long-range connectivity. Accurate thalamic nuclei segmentation provides
insights about structural connectivity and the neurodegeneration mech-
anisms occurring in distinct brain disorders, for instance Alzheimer’s
disease and Frontotemporal dementia (FTD). In this work, we propose
a novel thalamic nuclei segmentation approach that relies on tractog-
raphy, thalamic nuclei priors and local fibre orientation. Validation was
performed in a cohort of healthy controls and FTD patients against other
thalamus connectivity-based parcellation methods. Results showed that
the proposed strategy led to anatomical plausible thalamic nuclei seg-
mentations and was able to detect connectivity differences between con-
trols and FTD patients.

1 Introduction

The thalamus is the main gateway of information to the cerebral cortex for: (i) all
sensory information, with exception of the olfactory system; (ii) anatomical loops
of motor systems, between the cerebellum or basal ganglia and cerebral cortex
and (iii) projections from limbic structures to the brain cortex. Additionally,
the human thalamus has distinct nuclei that differ in terms of subcortical and
cortical neural pathways. These two aspects have led to the development of
segmentation techniques to parcellate the thalamus into different nuclei.
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Current imaging modalities such as Computed Tomography (CT) and Mag-
netic Resonance (MR) enable us to identify the thalamus, but they do not pro-
vide enough contrast to differentiate between thalamic subnuclei. Conversely,
diffusion MRI, a technique which assesses water diffusion within biological tis-
sues, has emerged as a way of exploring the unique white matter (WM) path-
ways within each thalamic nuclei and their connections with cortical regions.
The majority of thalamus parcellation techniques reported to date rely on dif-
fusion MR data to divide the thalamus into its distinct nuclei, by considering
either the local diffusion patterns and/or structural connectivity.

A commonly used thalamus tractography-based procedure was developed by
Behrens et al. [1], available as part of FSL1. Diffusion data analysis and tractog-
raphy are done in a combination of standard and native spaces through single
atlas propagation, which can affect the biological plausibility of connectivity
findings. Furthemore, validation was done in a small cohort of normal controls,
but its performance has not been tested when dealing with highly pathological
data.

A recent strategy [2] addressed these aspects by performing Diffusion
Weighted (DW) data processing and probabilistic tractography in the subject’s
native space, as well as by integrating population-specific thalamic nuclei priors.
This method was able to detect connectivity differences between the thalamus
and both the frontal and temporal lobes, which is consistent with previous FTD
studies. These results could not be replicated with the FSL pipeline [3].

In this work, we propose to improve on the above mentioned native space
based strategy by integrating local fibre orientation information to enhance tha-
lamus parcellations.

All the previously mentioned procedures were evaluated on a population of
healthy controls and FTD patients. Results showed that the proposed strategy
led to robust thalamic nuclei segmentations and was also sensitive to connectivity
changes between controls and FTD patients.

2 Methods

2.1 Data

A group of 55 individuals – participants of a multicentre study – 23 healthy
controls (mean age 43.0 years, age range [26.5, 70.6], 16 female) and 32 FTD
patients (mean age 50.9 years, age range [20.5, 77.0], 19 female) were considered
in this work. Diffusion data consisted of two repeated scans, acquired along 64
non-collinear isotropically distributed directions (b-value of 1000 s/mm2) and
four additional b-0 volumes on 1.5T and 3T Philips, Siemens and GE scanners,
with 2.5 mm3 isotropic voxel size. Volumetric T1-weighted MPRAGE images
were also obtained with an isotropic voxel size of 1.1 mm3.

1 http://fsl.fmrib.ox.ac.uk/.

http://fsl.fmrib.ox.ac.uk/
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2.2 Pre-processing

T1 images were corrected for bias field using N4 algorithm [4]. DW images were
also corrected for artifacts. First, the DW data was motion- and eddy-current
corrected by affinely registering them to an average b-0 image, generated through
a groupwise registration of the b-0 volumes in each subjects data [5]. Secondly,
susceptibility artefacts were addressed through phase unwrapping followed by
non-linear registration along the phase encoding direction of the distorted DW
images to the T1-weighted image [6].

2.3 FSL Pipeline

In brief, Behrens et al. work [1] comprised five main steps. First, the thalamus
and six cortical regions of interest (ROIs) – prefrontal, motor, sensory, parietal,
occipital and temporal cortices – per hemisphere were extracted from an atlas
in MNI152 space, available as part of SPM12, which follows the Neuromorpho-
metrics Inc. protocol and includes 135 neuroanatomical labels. Then, all these
ROIs were registered from MNI space to each subject’s diffusion space by com-
posing the intra-subject affine registration between the mean b = 0 volume and
T1-weighted data (using the FLIRT algorithm [7]) with a non-linear registration
from the T1-weighted image into the atlas in MNI152 space (using the FNIRT
algorithm [8]). Third, fibre orientations within the dMRI data were inferred
using the Ball-and-Stick model. Fibre architecture between the thalamus and
the six cortical ROIs was reconstructed through probabilistic tractography and
for each hemisphere separately, using the thalamus as seed region and any of
the six cortical ROIs as target region. Here, the connectivity between any two
points of interest was defined as the proportion of samples that pass between
them. Finally, each thalamic voxel was labelled as the cortical region with the
highest connection probability.

2.4 Thalamus Parcellation Using Tractography, Population-Specific
Priors and Local Fibre Orientation

2.4.1 Previous Work (PW)
The basis of the strategy proposed in this study was an existing thalamic nuclei
segmentation procedure [2], that succinctly consists in:

1. Data analysis in subject’s space: Each subject T1-weighted image was par-
cellated into 143 regions [9]. Thalamus and six cortical regions (prefrontal,
motor, sensory, parietal, occipital and temporal cortices) were selected per
hemisphere. During DW artefacts correction, the average b-0 volume was
registered into the T1-weighted image as one of the steps to correct for sus-
ceptibility distortions. The inverse of this transformation was computed and
used to map the thalamic and cortical masks from T1 to DW space. Fibre ori-
entations distribution (FOD) were inferred directly from the measured DW
signal by using a multi-fibre algorithm constrained spherical deconvolution
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method [10]. Probabilistic streamline tracking was then performed using the
iFOD2 algorithm [11] and repeated for every seed point (thalamus) and tar-
get region (any of the six cortical regions), enabling the estimation of the
number of streamlines that may exist between them. Finally, a segmentation
of the thalamic nuclei was obtained by estimating the probability that each
thalamic voxel was connected to a target cortical ROI.

2. Population-specific thalamic nuclei priors: Thalamic nuclei priors were
derived through an iterative strategy. First, a population-specific space was
built through groupwise registration of T1 and FA images of all individuals
[5]. Secondly, the connectivity maps of each subject were propagated to the
common space and averaged to get estimates of the group thalamic nuclei
location. The obtained priors were then mapped back to each individual’s
space and used to compute the new connection probability between every
thalamic voxel and each cortical region. The steps above were repeated until
convergence, and then a thalamus parcellation was obtained.

2.4.2 Proposed Strategy (PS)
The former segmentation procedure was extended to not only consider trac-
tography and thalamic nuclei priors, but also to incorporate fibre orienta-
tion information from each subnuclei. This iterative approach was based on a
mixture model of von Mises-Fisher (vMF) and optimised using Expectation-
Maximisation (EM). In more detail, it considered:

– Tractography: performed as in Sect. 2.4.1, enables the estimation of six
connectivity maps, that describe the connectivity probability of each thala-
mic voxel to a particular cortical region (prefrontal, motor, sensory, parietal,
occipital and temporal). This was represented in the PS as τ ;

– Thalamic nuclei priors: population-specific and derived following the same
steps as in Sect. 2.4.1. They provide a priori information about the expected
anatomical connectivity for each thalamic voxel and a specific cortical region,
characterised in PS by π;

– Fibre orientation: the FOD from each voxel, reconstructed as in Sect. 2.4.1,
was then segmented into its three major fibre orientations using a peak-finding
procedure that relies on multiple starting direction points and Newton opti-
misation [12]. The principal fibre orientation in each voxel was then selected
and described in terms of vMF functions.

The diffusion directional data V = {v1, . . . , vN} was modelled by a mixture of
c von Mises-Fishers distributions and its probability density function described
as:

f(v|θ) =
N∏

i=1

C∑

c=1

αicfc(vi|θ) (1)

The term αc represents the probability of a certain sample vi belonging to
nucleus c based on information derived from tractography τ and thalamic nuclei
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priors αc = τic.πic. On the other hand, fc(v|θc) is a vMF distribution that models
the principal fibre orientation in each subnucleus c:

fc(v|θ) = fc(v|μc, kc) = C(kc)ekcμT
c v (2)

where μc is the mean direction, kc the concentration parameter, C(kc) =
k1/2

(2π)3/2I1/2(kc)
the normalisation constant and I1/2 the modified Bessel function

of the first kind and order 1/2.
The model parameters θ = {μc, kc}c=1,...,C were learned through a maximum

likelihood formulation θ̂ = arg maxθL(θ) = arg maxθlogf(v|θ) and optimised in
a iterative way using Expectation-Maximisation (EM) with the following stages:

– E-step: update the membership weights of every element vi in each cluster c
given the parameter set θ at iteration t (θt)

p(c|vi, θ
t) =

αcfc(vi|θt)
∑C

c′=1 αc′f ′
c(vi|θt)

(3)

– M-step: find the parameters θt+1 that maximise the expectation of the log
likelihood L(θ)

rc =
N∑

i=1

vi.p(c|vi, θ
t) (4)

r̄c =
||rc||∑N

i=1 p(c|vi, θt)
(5)

μt+1
c =

rc

||rc|| (6)

kt+1
c ≈ 3r̄c − r̄3c

1 − r̄2c
(7)

The steps above are repeated until convergence. The algorithm returns both
θ = {μc, kc}c=1,...,C which are the parameters of c vMF distributions that model
the directional data V , as well the soft-clustering p(c|vi, θ) for all c and vi sam-
ples.

3 Results

Thalamus connectivity-based segmentations were derived for the three described
strategies (FSL, PW and PS) and individuals – controls and FTD patients – as
depicted in Fig. 1. The volumes of each connectivity-defined region (CDR) were
normalised to the total intracranial volume (TIV) and subsequently compared
between the two groups of subjects, in separate for each hemisphere and method,
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using the Mann-Whitney test. Then, multiple-comparison correction with false
discovery rate (FDR) strategy was performed (Table 1).

The PW and PS strategies led to smoother parcellations and more consis-
tent clusters between hemispheres, both in controls and patients, in contrast to
FSL (Fig. 1). Significant volume differences between controls and patients were
observed on the prefrontal CDR in both hemispheres by all the strategies, as
shown in Table 1. Additionally, PS and PW were also sensitive to connectivity
differences in the temporal CDR, which was not detected with FSL.

Fig. 1. Thalamic nuclei segmentations generated by FSL, PW and PS in four example
individuals displayed in MNI152 space.

4 Discussion and Conclusion

Previously, Behrens et al. [13] developed a probabilistic tractography algorithm
and use it to parcellated the thalamus based on its anatomical connectivity
towards distinct cortical regions. The resulting segmentations were in agreement
with previous known anatomy, with anterior thalamic regions preferentially con-
nected to prefrontal, motor and sensory cortices, whereas posterior clusters had
mainly WM projections towards parietal, occipital and temporal regions [14].

This aspect was also evident on the thalamus parcellations generated by PW
and PS approaches, both on normal controls and FTD patients, which did not
occur with the segmentations derived with FSL, as depicted in Fig. 1.
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Table 1. Corrected FDR p-values obtained by comparing the normalised CDRs vol-
umes between controls and FTD patients groups. Significant volumes differences were
detected on the prefrontal CDR in both hemispheres with all strategies, whereas for
the temporal CDR this was just observed with PW and PS approaches (one-tailed
significance test and P< 0.05).

Method Prefrontal Motor Sensory Parietal Occipital Temporal

Left hemisphere

FSL 0.039* 0.992 0.840 0.651 0.992 0.110

PW 0.014* 0.406 0.705 0.853 0.705 0.014*

PS 0.014* 0.496 0.555 0.799 0.250 0.016*

Right hemisphere

FSL 0.039* 0.947 0.625 0.625 0.947 0.794

PW 0.012* 0.904 0.794 0.687 0.236 0.019*

PS 0.012* 0.947 0.936 0.625 0.035 0.019*

The connectivity differences detected by PS and PW were in concordance
with previous FTD studies that have reported volume differences both on pre-
frontal and temporal cortices [15,16], while FSL was only able to pick on the
prefrontal region (Table 1).

PW and PS strategies rely both on tractography and thalamic nuclei priors,
but additionally PS accounts for the local fibre orientation. Similar results were
obtained with these approaches both in terms of the generated segmentations
(Fig. 1) and volume comparisons with identical p-values (Table 1). The incor-
poration of fibre orientation by PS may not seem an obvious advantage, but
it complements the global connectivity information obtained with tractography,
and hence guarantees a better subdivision of the thalamus. This is particularly
relevant in the posterior thalamic region as it is a fibre-crossing area, so the
anatomical connectivity reconstruction is more challenging.

Further validation of these results may involve a bigger cohort, as well the
performance of reproducibility tests. Future work will enhance the proposed
strategy by including other relevant modalities and geometrical constraints in
order to generate better thalamic nuclei segmentations and priors, and extend
the technique to the study of other neurological pathologies.
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