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Abstract. Studying human brain connectome has been an important, yet
challenging problem due to the intrinsic complexity of the brain function and
structure. Many studies have been done to map the brain connectome, like
Human Connectome Project (HCP). However, multi-modality (DTI and fMRI)
brain connectome analysis is still under-studied. One challenge is the lack of a
framework to efficiently link different modalities together. In this paper, we
integrate two research efforts including sparse dictionary learning derived
functional networks and structural connectivity into a joint representation of
brain connectome. This joint representation then guided the identification of the
main skeletons of whole-brain fiber connections, which contributes to a better
understanding of brain architecture of structural connectome and its local
pathways. We applied our framework on the HCP multimodal DTI/fMRI data
and successfully constructed the main skeleton of whole-brain fiber connections.
We identified 14 local fiber skeletons that are functionally and structurally
consistent across individual brains.
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1 Introduction

Understanding the brain connectome has been significantly important in cognitive and
clinical neuroscience [1–3]. It is fundamentally critical for researchers to understand the
organizational architecture of human brain from both structural and functional per-
spective. With advanced neuroimaging techniques such as MRI, we are able to measure
and quantify brain structure/function in vivo. When mapping brain connectivity,
functional MRI (fMRI) and Diffusion Tensor Imaging (DTI) are two modalities
commonly used. Based on fMRI and DTI datasets, many studies have been done to
investigate the brain connectome using either functional interactions, e.g., correlations
[4], partial correlations [5] and regression [6], or the strength of white matter con-
nections [7]. On the other hand, numerous reports have indicated that the structural
connectivity patterns “connectional fingerprint” of brain areas can largely determine
what functions they perform [8]. However, multi-modality (DTI and fMRI) brain
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connectome analysis is still under-studied, in our view. The challenge is the lack of an
efficient framework that can integrate the knowledge from two different modalities
together.

Here, our proposed computational framework integrates two lines of research
efforts including sparse dictionary learning derived functional networks and DTI
derived fiber based structural connectivity into a joint representation of brain con-
nectome. In this way, functional connectivity and structural connectivity can be studied
and analyzed simultaneously. As illustrated in Fig. 1, we applied our framework on the
Human Connectome Project (HCP) multimodal DTI/fMRI datasets to derive the main
skeletons of the whiter matter pathways that are most active when performing different
brain functions. We identified 14 major local fiber patterns from the main skeletons
which have both functional and structural consistency across multiple individuals. The
derived white matter skeleton and its local fiber patterns provide a new way to study
brain connectome via multimodalities of MRI and shed novel insights on integrating
brain structural and functional information.

2 Materials and Methods

2.1 Data Acquisition and Preprocessing

For this study we used the data from HCP Q1 release [1] that includes seven task-fMRI
datasets of 68 participants. The tasks include working memory, gambling, motor,
language, social cognition, relational processing and emotion processing. For task-
fMRI, the acquisition parameters are as follows: 72 slices, TR = 0.72 s, TE = 33.1 ms

Fig. 1. The proposed framework of joint representation of functional networks (based on fMRI
data) and structural connectivity (based on DTI data). (A) Functional networks from fMRI.
(B) The cortical surface within DTI space. (C) The result of mapping functional networks onto
the DTI cortical surface. (D) The whole brain fibers. (E) The fiber bundles connecting to
functional activation areas in C. (F) An example of main skeletons of brain connections. Step1:
registering the functional networks to DTI space; Step 2: screening fibers which connect the
activation areas on the cortical surface; Step 3: using the joint representation profiles from step 1
and 2 for statistical analysis and constructing the main skeletons of the brain connections.
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and 2.0 mm isotropic voxels. The acquisition parameters were as follows: 2 � 2
� 2 mm spatial resolution, 0.72 s temporal resolution and 1,200 time points. For DTI
data, spatial resolution = 1.25 mm � 1.25 mm � 1.25 mm. More details of data
acquisition and preprocessing may be found in [9].

2.2 Representation of Functional Networks

A brain functional network can be defined as the brain regions that functionally
“linked” [10]. It has been proven that the dictionary learning and sparse coding
approaches are able to successfully identify task-related and resting state brain func-
tional networks even when they have overlaps in both spatial and/or temporal domain
[11, 12]. Based on dictionary learning, the whole-brain fMRI signals can be repre-
sented as a linear combination of a relatively small number of dictionary signals. The
major steps are illustrated in Fig. 2. Firstly, the whole-brain normalized signals are
arranged into a matrix X (Fig. 2A) with n columns (n voxels) and each column contains
a single fMRI signal with length of t (t time points). Then X is decomposed into two
parts: dictionary matrix D (Fig. 2B) and a sparse coefficient matrix a (Fig. 2C). The
empirical cost function is summarized in (1), and its aiming of sparse representation
using D, ‘ xi;Dð Þ is defined in (2), where k is a regularization parameter to trade off the
regression residual and sparsity level.

fn Dð Þ, 1
n

Xn

i¼1
‘ xi;Dð Þ ð1Þ

‘ xi;Dð Þ, minai2Rm
1
2

xi � Daik k22 þ k aik k1 ð2Þ

Each element of a indicates the extent when the corresponding dictionary atom is
involved in representing the actual fMRI signals. As a result, each row of a can be
mapped back to the brain volume space as a functional brain network pattern (Fig. 2C).
Because 400 was proven to be an appropriate number of dictionary size [11] for HCP
Q1 dataset, in this work we also set 400 for all task fMRI data. Thus, for each HCP
subject, 2,800 functional networks will be obtained from seven tasks.

Fig. 2. Pipeline of using dictionary learning to derive 2,800 functional networks for each
subject.
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2.3 Representation of Structural Connectivity

In this section, we explore DTI derived fibers connecting to the activated areas of each
functional network (step 2 in Fig. 1). Note that the fibers are under the DTI space, so
we need to register the individual fMRI data to its own DTI space. Here we adopted a
widely used linear registration tool – FLIRT from FSL [13]. White matter surface can
be obtained through the DTI tissue segmentation and DTI cortical surface recon-
struction algorithms [14]. Then we mapped the voxel from the registered fMRI data to
its nearest vertex on the cortical surface and thus each surface vertex can be linked to
the corresponding functional intensity in the decomposed coefficient matrix in
Sect. 2.2. At last, for each cortical surface labeled with functional intensity values, we
will examine the whole brain fibers and extract every fiber if both of its ending
locations connected to activated regions on cortical surface (Fig. 1E). A threshold
T = 0.5 is used to judge if a vertex on the cortical surface is active or not. Similar to the
threshold in task activation detection [11], T is set empirically in this work. In this way,
we could extract the fiber bundles which include all the connections from the activation
area of different functional networks. A vector Ni can be used to represent the fiber
connection of the corresponding functional network i:

N j
i ¼ f1; f2; f3. . .fn�1; fn½ � ð3Þ

where i represents the i-th functional network, j represents the subject index, f repre-
sents a fiber which is from the whole brain fibers and n is the total number of the fibers
of subject j. The value f will be set to 1 if this fiber has a connection to the i-th
functional network and 0 otherwise.

2.4 Joint Representation of Functional Networks and Structural
Connectivity to Identify Main Skeletons of the Brain Connections

In this section, we introduce a novel joint representation approach to integrate the
functional and structural connectivity together to explore the main skeleton of fiber
connectomes. In the Sect. 2.3, we can obtain the registered functional networks and the
related fiber connections. Here, each fiber connection pattern we achieved was from a
single functional network. However, the human brain is widely considered to include a
collection of specialized functional networks that flexibly interact when different brain
functions are performed [15]. Thus, instead of studying a single connection pattern
derived from single functional network, we need a way to discover the fiber connec-
tome in a global vision. In this work, instead of working on the overlap of the func-
tional networks, we focus on the overlaps of fibers. A matrix Y is generated for each
subject:

Y 2 R
m�n ð4Þ

n represents the total number of fibers, m is the total number of functional networks
(2,800 in this work) for each subject and Ni defined in Sect. 2.3 is one row from
Y. Each row of Y represents the fiber connections for a single functional network and
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each column represents the functional networks connecting to the corresponding fiber.
Then, we are able to conduct the statistics of the elements in each column of the matrix
Y, thus a histogram vector H can be computed:

H ¼ h1; h2; h3. . .hn�1; hn½ �; hi ¼
X2800

j¼1
yj;i ð5Þ

where hi is the total number of functional networks that fiber i participated, and the
more networks i participated, the more activated intensity i is. After we have the fiber
connectome matrix Y and its histogram vector H, then we can rank those fibers from
most activated fibers to the least activated fibers. Thus, we could identify which fibers
tend to be more activated in the functional networks and use them to generate main
skeletons of the brain connectomes. An example is shown in the Fig. 1F. It contains
5000 most activated fibers across the whole brain. In order to examine the consistency
of the skeleton we obtained, we applied our approach on HCP Q1 release data.

2.5 Local Connectome Analysis Based on the Main Skeletons of the Brain
Connectomes

The skeletons of brain connectomes describe the main connections across the major
brain regions. More importantly, they represent the most commonly used fibers and
their connection pathways in multiple functional networks. In order to better under-
stand the main skeletons we obtained, we perform further analysis to investigate the
local brain areas and connections that the skeletons connected to. To analyze the main
skeletons, here we only focus on the fibers from the main skeletons obtained from
Sect. 2.4 and examine the relationship between those fibers and functional networks.
The main skeleton fiber connection matrix is defined as Ys:

Ys 2 Rm�n0 ð6Þ

where n0 is the number of fibers from main skeletons. We extracted each row of Ys and
studied the corresponding functional networks and fiber connections as well. Through a
simple k-means clustering algorithm, typical local fiber pattern will be identified from
the equation:

ci := argminj xi � lj
�� ��2; lj :=

Pm
i¼1 1 ci ¼ jf gxiPm
i¼1 1 ci ¼ jf g ð7Þ

where c is the cluster of i, lj is the center of cluster j, x is the sample data.

3 Experimental Results

3.1 The Main Skeletons of the Fiber Connections of Human Brain

According to Sects. 2.2, 2.3 and 2.4, we obtained the main skeleton of the fiber
connections from one subject at three different connectome levels, which are shown in

Exploring Fiber Skeletons via Joint Representation of Functional Networks 361



Fig. 3. Three different connectome levels have 500 fibers (Fig. 3B), 5,000 fibers
(Fig. 3C) and 10,000 fibers (Fig. 3D), respectively. Although the number of the
extracted fibers is largely different, we find that the connectome pathway is relative
robust. For example, the fiber connections in the frontal lobe are obvious and consistent
across those three levels. We named these connectome pathways as the skeletons of the
fiber connections of human brain. We want to emphasize that, in the paper, we used the
main skeletons with level of 5,000 fibers as the standard and further analyses are also
based on this level. The reason we choose level of 5000 is that it has the clearness and
robustness of the fiber connectome pathways. In details, level of 500 occupies only
0.25% from whole brain fibers, thus this number is too small to clearly and completely
represent the connectome pathway. Level of 10,000 holds about 5% fibers from whole
brain, but among those 10,000 fibers, some fibers are not very active. Thus the sparsity
of the connection matirx Y is only about 0.0035, which is too small from our expe-
rience. In contrast, level of 5,000 accounts for nearly 2.5% fibers and the sparsity of the
connection matrix is about 0.008, thus, level of 5000 is chosen.

3.2 The Consistency of the Main Skeletons of the Fiber Connections
Across Different Subjects

In order to check the robustness of the main skeletons of the fiber connections we
obtained, we adopted our framework on HCP Q1 release dataset. The main skeletons
are obtained and we show 10 of them as examples in Fig. 4 to illustrate their con-
sistency across different subjects.

From the Fig. 4, we can see that the main skeleton of the fiber connections is clear
and consistent across the subject. Compared with whole brain fibers (as shown in
Fig. 1D), these 5,000 most activated fibers describe clear connectome pathways for the
fiber connectomes. Those connections represent the most dominant connection patterns
under task performances and they connected significant brain regions. This result is
interesting because the functional networks and whole brain fibers are from each
individual and the way to obtain main skeletons is totally possessed individually.

Fig. 3. The main skeletons of the fiber connections of an individual case. (A) The cortical
surface of the brain. (B) Main skeletons of the fiber connections on level of 500. (C) Main
skeletons of the fiber connections on level of 5,000. (D) Main skeletons of the fiber connections
on level of 10,000.
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Impressively, the pattern of the skeleton is quite similar across these subjects. Further
analysis for the consistency will be provided in the Sects. 3.3 and 3.4.

3.3 Explore Major Local Pattern for the Fiber Bundles from the Main
Skeleton of the Fiber Connections

Using the approaches from the Sect. 2.5, we can obtain fiber connections for each
functional network at the level of 5,000 fibers from Ys, and we aim to investigate how
the main skeletons participated in the functional networks. Thus, for each subject, Eq. 7
will be applied on the corresponding main skeleton fiber connection matrix Ys. After
examining the consistency of each fiber bundle cluster across the subjects, 14 major
local patterns are identified from the main skeletons and are shown in the Fig. 5. These
local patterns are reasonably consistent across subjects, and they compose the main
skeletons.

Fig. 4. The main skeletons of the fiber connections for 10 subjects. Each main skeleton is shown
separately. The sequence of sbj1 to sbj10 is from left to right, and top to bottom.

Fig. 5. The main connection patterns of the skeleton. (A) The main skeletons of the fiber
connections. 10 local regions are highlighted with different colored circles. (B–O) 14 major local
patterns are shown to present the contribution of local regions to the main skeletons. The
numbers of their local regions from A are also provided in the figure.
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From those 14 major patterns, 8 of them are the connections within the single brain
region. Another 6 patterns are the combination of those 8 unique connections, meaning
that some functional networks have much stronger activation levels and they may
include two or more functional networks. This is an evidence for the hierarchical theory
of functional networks. Another interesting finding is about the fiber connectome
between left and right hemispheres. As we can see from Fig. 5B, D, E and F, the main
fiber connections between left and right hemispheres are from corpus callosum. Apart
from corpus callosum, there are many fiber bundles connecting left and right hemi-
spheres, however, they do not belong to the main skeleton.

3.4 Corresponding Functional Networks for Major Local Patterns

It is interesting to know whether the corresponding functional networks of those local
pattern fiber connections are consistent. It is worth noting that local pattern fibers are
from the main skeleton fiber connection matrix Ys. However functional networks are
corresponding to the whole brain fiber connection matrix Y, Y � Ys. So it is not
necessary that the corresponding functional networks of same local pattern fibers must
be consistent. To examine functional consistency of local patterns, we retrieved the
fiber connections from Ys and their corresponding functional networks. We used local
pattern from Fig. 5E as an example and illustrated them in Fig. 6. From Fig. 6, the
activation areas are consistent, and they are located in the occipital lobe. That is, for
those local patterns, their corresponding function networks are also consistent. In
addition to the local pattern in Fig. 5E, other major local patterns have similar char-
acteristics. Thus, we have the conclusion that the main skeletons of the fiber connec-
tions we obtained have not only structural consistency but also consistent functional
networks.

Fig. 6. The functional networks for local pattern Fig. 5E across the subjects. (A) An overview
of functional network and its fiber connections (green lines) from sbj1. (B) Another 9 examples.
The sequence of sbj2 to sbj9 is from left to right, top to bottom. Color bar is shown on the bottom
left.
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4 Conclusion

In this paper, we proposed a novel framework for joint representation of structural
connectivity and functional networks to explore the main fiber skeletons of the brain.
The major advantage of our framework is that it enables learning connections from
multimodality (both fMRI and DTI) to investigate the most activated fibers and then
derive the main skeletons of fiber connections. The analysis of our framework on HCP
multimodal DTI/fMRI data suggested that main skeletons of the fiber connections can
be robustly identified. In addition, through studying the main skeletons of the fiber
connections, typical local patterns can be discovered and studied. Those local patterns
will help to not only present both functional and structural consistency across different
subjects, but also provide a new insight to understand the mechanism of the fiber
connectome of the brain.
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