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Abstract. In this study, a personalized computer aided diagnosis sys-
tem for autism spectrum disorder is introduced. The proposed system
uses resting state functional MRI data to build local classifiers, global
classifier, and correlate the classification findings with ADOS behavioral
reports. This system is composed of 3 main phases: (i) Data preprocess-
ing to overcome the motion and timing artifacts and normalize the data
to standard MNI152 space, (ii) using a small subset (40 subjects) to
extract significant activation components, and (iii) utilize the extracted
significant components to build a deep learning based diagnosis system
for each component, combine the probabilities for global diagnosis and
calculate the correlation with ADOS reports. The deep learning based
classification system showed accuracies of more than 80% in the signif-
icant components, moreover, the global diagnosis accuracy is 93%. Out
of the significant components, 2 components are found to be correlated
with neuro-circuits involved in autism related impairments as reported
in ADOS reports.
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1 Introduction

Autism spectrum disorder (ASD) is a neuro-developmental disorder, and it is
associated with early-emerging social and communication impairments, in addi-
tion to rigid and repetitive patterns of behavior and interests [1,2]. Although
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there are no well established causative factors explaining ASD [3], alterations
in functional activity patterns in brain are believed to play important role in
explaining and diagnosing ASD [4]. One of the most widely used methods to
measure the brain activity is the functional MRI (fMRI) [5,6]. The fMRI is cat-
egorized into two main types: resting state fMRI (RfMRI) and task based MRI.
In the RfMRI, patients are not asked to do any task, they are only asked to
stay awake with open eyes and not to move in the scanner, and Blood Oxy-
genated Level Dependant (BOLD) signal is recorded overtime [7]. In the task
based experiment patients are asked to complete a certain task and the sponta-
neous low-frequency fluctuations in the BOLD signal in response to this task is
recorded [8]. The main purpose of the RfMRI studies is to identify the alterna-
tions in the functional connectivity patterns between two groups (i.e., patients
VS controls), and it is widely reported in the literature that ASD is associated
with such alteration [9,10].

A wide range of studies were concerned about reporting statistical group
differences between autistic subjects (ASDs) and typically developed subjects
(TDs). In [9], the default mode network activity alternation was examined
between 16 ASDs and 15 TDs, where ASDs showed weaker connectivity and
this weaker connectivity was positively correlated with ASD main impairments,
poorer social skills and increases in restricted and repetitive behaviors and inter-
ests, while stronger connectivity in multiple areas were correlated with commu-
nication. A more recent study in [10], used a dataset of 84 ASDs (42 males/42
females) and 150 TDs (75 males/75 females). Males with ASD showed patterns
of hypo-connectivity, while females with ASD showed hyper-connectivity.

In addition to the importance of reporting group differences between the two
groups -ASDs and TDs-, it is also important to try utilizing the RfMRI in autism
diagnosis. Although it is a promising direction and initially yielded good results,
only few studies were conducted to try diagnosing autism using RfMRI. Two
recent examples of these studies are found in [11] and [12]. The main goal in
[11] is to identify connectivity networks that are correlated with ASD symptoms
severity. In [11], a balanced dataset of 20 ASD subjects and 20 TD subjects
was used. Individual salience network maps were created per subject and those
maps yielded classification accuracy of 78% between ASDs and TDs, in addition,
the salience network was related to the symptoms of restricted and repetitive
behaviors with Pearson correlation coefficient, R2 = 0.36 and P = 0.07. Another
approach for diagnosing using RfMRI was reported in [12], where a longitudinal
study used a dataset of 59 subjects at age of 6 months with high familial risk
for ASD. The reported functional connectivity at age of 6 months matched the
behavioral scores at age of 24 months which demonstrates the power of RfMRI
in early ASD diagnosis.

In this study, we are introducing a large scale personalized diagnosis sys-
tem for ASD. We demonstrate the power of our approach in identifying the
symptoms severity by correlating our personalized maps finding with Autism
Diagnostic Observation Schedule (ADOS). To build a system with high gener-
alization capability and with no need to run the RfMRI analysis (which is time
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consuming) for each new unseen subject, we divided the system into two phases,
(i) defining areas of statistical significance using small subset of the data and
(ii) building a deep learning based system that utilizes those areas in diagnos-
ing unseen subjects and define neuro-circuits of highest correlation with ADOS
scores. More details about the approach are discussed in the next sections.

2 Materials and Methods

In this study 156 subjects obtained from National Database of Autism Research
(NDAR: http://ndar.nih.gov) are used. The dataset is selected to be balanced
(78 ASDs and 78 TDs). The used data are obtained from a single study done at
George Washington University [13]. All neuroimages were produced by a Siemens
Magnetom TrioTim with a 3 T magnet with TR = 2 s, TE = 30 ms and flip angle
90◦, to produce images with 3 mm pixel spacing and 4 mm slice spacing. Time to
acquire 33 coronal slices spanning the entire brain was 2.01 s. The resting state
data were recorded for approximately 6 min. All ASD subjects in the study
have ADOS reports. The experiment in this study is divided into 3 main steps
explained in details in the next subsections.

2.1 Step 1: RfMRI Preprocessing

Prior to RfMRI analysis, there are several preprocessing steps [14]. In this study,
the preprocessing was done using SPM12 (http://www.fil.ion.ucl.ac.uk/spm)
toolbox. The preprocessing pipeline includes four main steps: (i) image realign-
ment for motion correction, (ii) slice timing correction to overcome the effect
of capturing samples at different times, (iii) image normalization to standard
MNI152 space resampled every 2 mm, and finally (iv) Gaussian spatial smooth-
ing using filter with full-width half-maximum of 6 mm.

2.2 Step 2: RfMRI Analysis and ROIs Extraction

In this step, a balanced subset of 40 subjects (20 ASDs and 20 TDs) are used to
obtain the original regions of interest (ROIs). The ROIs were defined as the out-
put components from the Independent Component Analysis (ICA) that showed
statistical significance. To extract the ROIs of these 40 subjects, group ICA is
used [15]. In the group ICA, time courses of the 40 subjects are concatenated
and then decomposed into two matrices (i) group time course multiplied by (ii)
group independent spatial components. To extract subject-specific time course
and subject-specific spatial components, dual regression algorithm is used.

The intuition behind using ICA is the analogy between the RfMRI analysis
and the blind source separation (BSS) problem [16], where it is required to
recover set of statistically independent components with minimal error. The
BSS problem can be formulated as:

xi(t) = Asi(t) + μ + ηi(t) (1)

http://ndar.nih.gov
http://www.fil.ion.ucl.ac.uk/spm
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Fig. 1. The analysis of 4D-RfMRI data into group spatial components and group time
course, then using dual regression to obtain subject specific time courses and subject
specific spatial components

Where xi is the BOLD signal measured over time, si is the non-Gaussian source
signal, ηi ∼ N(0, σ2

∑
i), A is the mixing matrix, μ is the mean of observations

xi and i is the an index over voxel space To solve this BSS problem it is required
to find the unmixing matrix W such that

ŝi = Wxi (2)

is a close approximation of the original measured signal. To estimate the
unmixing matrix, the it is needed to optimize the rotation matrix Q in the
whitened observations space:

ŝ = Wx = Qx̃ (3)

Where:
x̃ = (Λq − σ2Iq)−1/2U t

qx (4)

are the whitened observations, and Uq and Λq are the first q eigen-values of U and
Λ, U and Λ are the Singular Value decomposition matrices of the observations
X and Q is qxq rotation matrix. To solve for the unmixing matrix, and based
on the non-Gaussian sources constraint, the algorithm described in [17] is used,
where the individual sources are calculated by projecting the the observations
x onto the rows of Q, thus the rth source is given by the iterative algorithm
described in [17]:

q̂tr ← 〈(xF ′(ŝr) − F ′′(ŝr)〉q̂r〉 (5)

where q̂r is the rth row of Q and F is general nonquadratic function and F ′ is
the derivative of F . To obtain all the rows of Q, this iterative approach is run for
q times. For more mathematical details about the solution finding, uniqueness,
correctness, and model order, the reader is referred to [15].

After completing the probabilistic ICA analysis of the group concatenated
subjects, the output group spatial maps act as a set of spatial regressors and a
General Linear Model (GLM) is used to find each individual subject time course.
The variance normalized time courses are then fed to another GLM to obtain
the subject specific spatial maps [18].
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To get the significant ROIs from the output individual spatial maps, a non-
parametric permutation test is used with two conditions, (i) ASD > TD and (ii)
TD > ASD and 5000 permutations [19]. The output P values are then corrected
using Bonferroni correction. Using α level of 0.05 and after the Bonferroni correc-
tion, 34 components were found to be significant. The analysis in this study was
performed using FSL5.0 package (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). The
RfMRI analysis and ROIs extraction are illustrated in Fig. 1.

2.3 Step 3: Personalized Diagnosis for New Unseen Subjects

With the ROIs having been obtained in the previous step using a subset of 40
subjects, there is no need to repeat the entire pipeline analysis. Our proposed
approach is to do the preprocessing steps then feed the new unseen subject to the
dual regression to extract both spatial and time components. With this approach
it is more feasible and more time efficient. In this study, the time courses and
spatial maps of 116 subjects were obtained using the dual regression. These 116
subjects are then used in the personalized diagnosis system.

In the literature, the features used were the individual subjects spatial maps
as in [11], but the major drawback of this approach is having number of fea-
tures much greater than the number of subjects which increases the possibility
of having under-determined system and increases the learning difficulty [11]. To
overcome this problem in our study we used features derived from the individual
temporal components. We used the power spectral density (PSD) of the individ-
ual time courses, and the reason behind this selection is the time shift invariance
in the PSD. Another advantage in the PSD is the symmetry that allows use of
only one half of the signal which increases the amount of features significantly.

Fig. 2. The personalized diagnosis pipeline. The
subject specific time course is used to calculate
PSD. PSDs are then feed to the deep learning
based classification system and the output prob-
abilities are then used for global diagnosis and
correlation with ADOS reports

As shown in Fig. 2, for each
of the 34 ROI, half the signal
is fed to a deep learning based
classification system which con-
sist of an autoencoder for dimen-
sionality reduction followed by
a neural network for classifica-
tion. To fine tune the model
hyper-parameters, i.e., the spar-
sity proportion, the sparsity reg-
ulation, L2 regularization and
number autoencoder hidden lay-
ers were obtained using a ran-
dom heuristic search. The search-
ing range for the sparsity propor-
tion is defined between 0.05 and 0.9, for the sparsity reactualization is between
1 and 20, for the L2 regularization is between 10−3 and 10−6 and the number of
hidden layers is between 10 and 100. The neural network used for classification is
a single layer neural network with 10 hidden neurons. The global subject diagno-
sis is based on a winner-takes-all approach, where the components probabilities

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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are used for voting and the winner class is considered as the global diagnostic
decision.

To assess the statistical significance of the classifier, and to ensure its robust-
ness, the significant areas were tested using bootstrapping. The labels of ASD
and TD groups were randomly shuffled for 99 times and the classifier was trained
and tested using LOSO with this completely uninformative data to ensure ran-
dom performance in response to randomly shuffled labels.

In order to be able to correlate the significant areas of high accuracies with
actual behavioral reports, an atlas defining 34 resting state networks is used.
The used atlas is built using 4 local atlases having total of 34 cortical areas and
these 4 local atlases are:

1. Parietal cortex atlas [20]: This local atlas, defines both functional connectivity
and anatomical connectivity on both humans and macaques. It divides the
the parietal cortex into 10 components.

2. Temporoparietal junction (TPJ) [21]: In this local atlas, TPJ is divided
into 2 components: (i) anterior TPJ cluster, which showed interaction with
ventral prefrontal cortex and anterior insula and (ii) posterior TPJ cluster
which showed interaction with posterior cingulate, temporal pole, and ante-
rior medial prefrontal cortex

3. Dorsal frontal cortex [22]: In this local atlas, the human dorsal frontal cortex
is parcellated into 10 components They are all between the human inferior
frontal sulcus and cingulate cortex

4. Ventral frontal cortex [23]: In this local atlas, the ventral frontal cortex was
divided into 11 components, in addition to one more component from ventro-
lateral frontal pole. The spatial correlation was calculated between the output
independent sources and each of the 34 areas defined in the atlas.

3 Experimental Results

ASD and TD subgroups were well-matched with respect to gender and age. Out
of 78 ASD subjects, 40 were female (51%), while 43 of the 78 TD subjects were
female (55%). The gender imbalance was statistically insignificant (χ2 = 0.23,
p = 0.63). The mean age of ASD subjects was 13.6 years, while the mean age
was 12.8 years for the TD group. The age difference is statistically insignificant
(t = 0.458, p = 0.647). In terms of IQ, the groups were less matched,but the
difference in mean score is less than one standard deviation. For ASD group,
the mean is 102 and the standard deviation is 21.2, while for the TD group, the
mean is 111 and the standard deviation is 15.6.

3.1 Significant ROIs Personalized Diagnosis

Out of the 34 components, and after Bonferroni correction, 12 components were
found to be statistically significant at α = 0.01. These 12 components were
then used in building the personalized diagnosis system. Three cross validation
techniques are used, 4 folds, 10 folds and leave-one-subject-out. Table 1 shows the
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Fig. 3. The personalized maps of 2 ASDs
and 2 TDs. It is obvious that more areas
are affected in the ASD cases than in TD
cases.

Table 1. The Accuracies obtained for
the 12 significant components using 4-
folds, 10-folds and leave-one-subject-out
(LOSO).

Component Acc Acc Acc
4-Folds % 10-Folds % LOSO %

1 78.5 81.1 86.3

4 79.3 82.4 87.0

8 82.7 85.6 90.2

11 76.2 80.4 85.06

13 81.1 83.7 87.6

14 77.1 81.8 85.7

17 84.3 86.1 92.8

18 74.2 78.6 86.3

22 80.5 83.7 86.3

23 82.9 86.5 88.9

25 85.8 88.1 92.8

34 84.1 86.5 90.2

accuracies obtained for the 12 component using the 3 validation techniques, and
the most correlated atlas area with each component. Also, Fig. 3 shows sample
of personalized diagnosis maps for 2 ASDs and 2 TDs. The overall diagnostic
accuracy, sensitivity and specificity after the components fusion are found to be
93%, 91% and 94% respectively.

The result of bootstrap testing done by creating 99 versions of randomly
shuffled label yielded a P value of 0.01 for each component diagnosis accuracies,
which shows the statistical significance of the classifiers finding.

3.2 Correlation Between Personalized Diagnosis and ADOS
Reports

To ensure the relevance of these components to ASD, each component output
probability is correlated with the Total ADOS score and ADOS severity score.
The Pearson correlation coefficient varies between −0.28 and 0.27 for Brodmann
area/brain regions involved in neuro-circuits previously reported to be implicated
in ASD. Table 2 shows the highly correlated nuero-circuits with ADOS reports
and thier anatomical correspondence. To cross validate the relevance of these
regions to ASD, each brain region was 347 was correlated with the Total ADOS
score and ADOS severity score.
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Table 2. Mapping between ADOS subscores, Research Domain Criteria (RDoC) neu-
rocircuits, and functional connectivity networks. Anatomical (Brodmann) areas over-
lapping functional networks are given in parentheses, where Fpl, Cluster 4 is the 4th
component of the parietal cortex local atlas and TBJb is the posterior TPJ component.

Behavioral component Correlated
component

RDoC defined
neurocircuit

Anatomical
correspondence

Restricted inter-
est/repetitivebehaviors

4 Reward
learning

Fpl, Cluster 4 (BA10)

4 Habit Fpl, Cluster 4 (BA10)

Attention 4–22 Ventral
attention
system

Fpl, Cluster 4 (BA10),
TPJb (BA 39–40, 22)

Language 22 Receptive TPJb (BA 39–40, 22)

Social 4 Affiliation and
attachment

Fpl, Cluster 4 (BA10)

Social 4–22 Understanding
the mental
states of
others

Fpl, Cluster 4 (BA10),
TPJb (BA 39–40, 22)

Executive function 4 Working
memory

TPJb (BA39–40)

4 Conclusion, and Future Work

This study demonstrate that RfMRI could enhance both local and global diag-
nostic accuracy of ASD, with increased ability to predict clinical phenotypes,
and potential ability to develop better individualized treatments plan. Specific
affected networks could be a biomarker for correlation with specific types of
behavioral abnormalities. Future research should focus further on using big data
technology to integrate multiple datasets from larger populations and multi-
ple modalities (structural MRI, DTI, etc.) to better understand clinically rele-
vant neuro-biological pathways and assess response to personalized treatments
in ASD. In addition, integrating information from multiple data sources such as
behavioral reports and genetic profiles to get more insight about components of
interest observed on each individual subject would be of great importance.
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