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Abstract. Confocal laser endomicroscopy (CLE) is a novel imaging
modality that provides in vivo histological cross-sections of examined tis-
sue. Recently, attempts have been made to develop miniaturized in vivo
imaging devices, specifically confocal laser microscopes, for both clinical
and research applications. However, current implementations of minia-
ture CLE components such as confocal lenses compromise image resolu-
tion, signal-to-noise ratio, or both, which negatively impacts the utility of
in vivo imaging. In this work, we demonstrate that software-based tech-
niques can be used to recover lost information due to endomicroscopy
hardware miniaturization and reconstruct images of higher resolution.
Particularly, a densely connected convolutional neural network is used to
reconstruct a high-resolution CLE image, given a low-resolution input. In
the proposed network, each layer is directly connected to all subsequent
layers, which results in an effective combination of low-level and high-
level features and efficient information flow throughout the network. To
train and evaluate our network, we use a dataset of 181 high-resolution
CLE images. Both quantitative and qualitative results indicate superior-
ity of the proposed network compared to traditional interpolation tech-
niques and competing learning-based methods. This work demonstrates
that software-based super-resolution is a viable approach to compensate
for loss of resolution due to endoscopic hardware miniaturization.

1 Introduction

Last year, colorectal cancer caused an estimated 50,260 deaths in the United
States alone and another 140,030 people are expected to be diagnosed with this
disease during 2018 [12,13]. Accordingly, it is the third most commonly diag-
nosed cancer among both men and women [13]. Early diagnosis and treatment of
colorectal cancer is crucial for reducing the mortality rate. Gastroenterologists
screen and monitor the status of their patients’ digestive systems through spe-
cialized endoscopy procedures such as colonoscopy and sigmoidoscopy. During
colonoscopy, a flexible video endoscope is guided through the large intestine, cap-
turing images used to differentiate between neoplastic (intraepithelial neoplasia,
cancer) and non-neoplastic (e.g., hyperplastic polyps) tissues.
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Since the introduction of endoscopy to gastroenterology, many significant
advances have been made toward improving the diagnostic and therapeutic
yield of endoscopy. Confocal laser endomicroscopy (CLE), first introduced to the
endoscopy field in 2004 [5], is an emerging imaging modality that allows histolog-
ical analysis at cellular and subcellular resolutions during ongoing endoscopy. An
endomicroscope is integrated into the distal tip of a conventional video colono-
scope, providing an in vivo microscopic visualization of tissue architecture and
cellular morphology in real-time. Endomicroscopes offer a magnification and res-
olution comparable to that obtained from ex vivo histology imaging techniques,
without the need for biopsy (i.e., tissue removal, sectioning and staining).

Despite the promise of confocal laser endomicroscopy, both clinicians and
researchers prefer compact instruments with relatively large penetration depth to
recognize tissue structures such as the mucosa, the submucosa, and the muscular
layers. Compact instruments can also directly benefit the patients, as smaller
devices improve early diagnostic procedures by offering greater flexibility during
hand-held use, for a quicker and less invasive endoscopy [3]. In this regard, further
attempts have been made to design miniaturized confocal scanning lasers capable
of capturing images from the tissue subsurface with micron resolution in vivo,
once installed on top of a flexible fiber bundle. However, miniaturization implies
using smaller optical elements, which introduces pixelation artifacts in images.
Therefore, there exists a trade-off between miniaturizing the CLE components
and the resultant image resolution.

Image super-resolution, transforms an image from low-resolution (LR) to
high-resolution (HR) by recovering the high-frequency cues and reconstructing
textural information. In the past decade, various learning-based approaches have
been proposed to learn the desired LR-to-HR mapping, including dictionary
learning [18,19], linear regression [14,17], and random decision forests [10].

In recent years, deep learning models have been applied to various image
interpretation tasks. Among such efforts, convolutional neural networks (CNN)
have been utilized to resolve the ill-posed inverse problem of super-resolution.
Dong et al. [1] demonstrated that a fully convolutional network trained end-to-
end can be used to perform the LR-to-HR nonlinear mapping. The same authors
extended their previous work by introducing deconvolutional layers at the end of
the architecture, such that the mapping between LR and HR images is learned
directly without image interpolation [2]. They also slightly increased the depth
of the network and adopted smaller kernels for better performance. Instead of
HR images, Kim et al. [6] suggested to train deeper neural networks through
predicting the residual images, which when summed with an interpolated image
gives the desired output. Increasing the network depth by adding weighted layers
introduces more parameters, which can lead to overfitting. Kim et al. [7] tackled
overfitting by using a deeply-recursive convolutional network. In their work,
the same convolutional layers are used recursively without the need for extra
parameters. To simplify the training of the network, they suggested recursive
supervision and skip connections to avoid the notorious vanishing/exploding
gradients.
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Given the constraints imposed by CLE hardware miniaturization, we propose
to leverage state-of-the-art deep learning super-resolution methods to mitigate
the unwanted trade-off between miniaturization and image resolution. In other
words, we show that the pixelation artifact, which is a consequence of hardware
miniaturization, can be significantly remedied through an efficient and practical
use of software-based techniques, particularly machine learning methods. To this
end, we employ a densely connected CNN in which extensive usage of skip con-
nections is exploited [15]. Dense connections help information flow in backprop-
agation algorithms and alleviate the vanishing gradient problem. Furthermore,
the low-level features from early layers are efficiently combined with those of
later layers. In addition, we use sub-pixel convolutional layers [11] to render the
upsampling operation learnable and expedite the reconstruction process.

2 Method

Our main goal in this work is to super-resolve an LR image by passing it
through a set of nonlinear transformations to recover high-frequency details
and reconstruct the HR image, effectively increasing the number of pixels from
NLR×NLR to NHR×NHR, where NHR

NLR
is the scale factor. The proposed architec-

ture consists of dense blocks and upsampling layers which are efficiently designed
to combine the features from earlier layers with those of later layers and improve
information flow throughout the model. Figure 1 depicts the architecture of the
employed model.

Low-level Features. A series of low-level features are extracted from small
regions of the LR input image using two successive convolutional layers with
kernel size 3×3 and ReLU non-linearity. The number of feature channels for the
first and second layer is 64 and 128, respectively. The learned low-level features
are used to efficiently represent the intrinsic textural differences between LR and
HR images.

High-level Features. The resultant low-level feature maps are used as the input
to a fully convolutional DenseNet architecture to provide high-level features.
DenseNet, which was first introduced by Huang et al. [4], consists of a set of
dense blocks in which any layer is connected to every other layer in a feed-
forward fashion. Alternatively stated, the ith layer in a dense block receives the
concatenation of outputs by all preceding layers as the input:

Li = relu(ψθi(L1 ++ L2 ++ ... ++ Li−1)) (1)

where ψθi denotes the transformation of the ith layer parameterized by θi and
++ denotes the concatenation operation. Dense skip connections help alleviate
the vanishing-gradient problem and improve information flow throughout the
network. Counter-intuitively, the number of parameters is also reduced since the
previously-generated feature maps are re-used in the subsequent layers, thus min-
imizing the need for learning redundant features. As depicted in Fig. 1, a single
dense block consists of m convolutional layers, each producing k feature maps,
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Fig. 1. Overall architecture of the DenseNet model, shown here for ×4 scale factor,
i.e., from a 2562 LR input image to a 10242 HR output image. In each dense block,
convolutional layers are connected to all subsequent layers.

referred to as the growth rate. Accordingly, the final output of each dense block
has m× k features maps. The growth rate regulates how much new information
each layer contributes to achieving the final performance. In this study, we set m
and k to be 8 and 16, respectively. Thus, each dense block receives and produces
128 feature maps as input and output. We stack 12 dense blocks in a feed-forward
fashion to construct the DenseNet part of our proposed architecture.

Upsampling Layers. In some SR methods [1,6,16], the LR image is first resized
to match the HR spatial dimensions using bicubic interpolation. Thereafter, sev-
eral convolution layers are employed to enhance the interpolated input in the
HR space. In addition to having a considerable increase in memory usage and
computational complexity, these interpolation methods are categorized as non-
learnable upsampling techniques, which do not leverage data statistics to bring
new information for more accurate reconstruction. As an alternative, deconvo-
lutional layers, which are learnable operations, are utilized to enlarge the spatial
dimensions of the LR image. However, the most prominent problem associated
with deconvolutional layers is the presence of checkerboard artifacts in the output
image. To overcome this, extra post-processing steps or smoothness constraints
are required. In this work, we use sub-pixel convolutional layers [11], to upsample
the spatial size of the feature maps within the network. Suppose that we desire
to spatially upsample c feature maps of size h × w × c to size H × W × c, by a
scale factor r = H/h = W/w. The LR feature maps would be fed into a convolu-
tion layer that increases the number of channels by a factor of r2, resulting in a
volume of size h×w× (c× r2). Next, the resultant volume is simply re-arranged
to be of shape (h× r)× (w × r)× c, which is equal to H ×W × c. Here, we use
successive ×2 upsampling layers to gradually increase the spatial dimensionality.
Each upsampling block contains a single convolutional layer with 3 × 3 kernel
size and ReLU non-linearity.
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Integration Layer. Once the features maps match the spatial dimension in
the HR space, an integration layer is used to consolidate the features across
the channels into a single channel. The integration layer is a convolutional layer
with 3× 3 kernel size and a single output channel. Finally, a sigmoid activation
function is employed to produce the super-resolved image.

3 Experiments

Data. We evaluate our study on the dataset provided by Leong et al. [9]. The
dataset contains 181 gray scale confocal images of size 1024 × 1024 from 31
patients and 50 different anatomical sites. Each patient has undergone a confocal
gastroscopy (Pentax EC-3870FK, Pentax, Tokyo, Japan) under conscious seda-
tion. CLE images and forceps biopsies of the same sites were taken sequentially at
standardized locations (i.e., sites of the small intestine). Each forceps biopsy was
then assessed by 2 experienced blinded histopathologists. Despite our applica-
tion of interest being colorectal cancer, we used the publicly available CLE celiac
dataset as a proof-of-concept. Colorectal cancer images are assessed primarily in
the large intestine as opposed to the small intestine used in celiac assessment,
however the imaging procedure (CLE) remains the same. This dataset was made
publicly available as part of an International Symposium on Biomedical Imaging
(ISBI) challenge and we used the provided training and test sets, consisting of
108 and 73 images, respectively.

Implementation Details. We partition the HR images into 64 × 64 non-
overlapping patches. Then, the HR patches are downsampled by bicubic inter-
polation to construct <LR, HR> pairs for training the model. The network
is optimized with Adam [8] optimizer with default parameters, i.e. β1 = 0.9,
β2 = 0.999 and ε = 10−4. We set the mini-batch size to 128. The learning rate
is first initialized with 0.001 and is multiplied by γ = 10 at epochs 50 and 200.
The network is trained for 300 epochs using L1 loss. For data augmentation, we
use random horizontal and vertical flips. The proposed method is implemented
in PyTorch and is trained using two Nvidia Titan X (Pascal) GPUs. It takes
2 days to train the networks for each upsampling factor. All hyper-parameters
(optimizer, learning rate, batch size, and distance metric) are found via grid
search on 20 images from the training set.

Qualitative Results. In Fig. 2, we visually compare our proposed super-
resolution method to three traditional interpolation techniques and two learning-
based approaches with scale factors of ×2, ×4 and ×8. Evidently, DenseNet pro-
duces output images of higher quality by reconstructing high-frequency cues and
removing visual artifacts, e.g. over-smoothness and pixelation. Specifically for a
×8 scale factor, the densely connected network can accurately recover high-level
textural patterns such as grids and granular patterns. Moreover, a more rigorous
examination of smaller regions for ×4 scale factor clearly reveals the superiority
of DenseNet model in producing sharper edges and improved contrast for lines
and shapes.
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Fig. 2. Qualitative results for two sample images. For each image, the first and second
circle rows show the zoomed-in patches for ×4 and ×8, respectively.

From a clinician’s point of view, the reconstruction power of the method
offers a clear advantage over others. In Fig. 3 we illustrate the trade-off between
the amount of lost information after downsampling and the quality of the recon-
structed image. As can be seen, a large portion of pixels is discarded in down-
sampling, restricting the networks to a small fraction of the original image pixels
for reconstruction. However, deep learning approaches are clearly capable of gen-
erating a sharp image from only 1.6% of pixels (for a scale factor of ×8) with
very small L1 distance values which indicates a minimal loss of information.

Fig. 3. Reconstruction analysis. (a) visualizes the amount of lost pixels for different
scale factors relative to the original size. (b) shows the reconstructed images for scale
factors ×2,×4 and ×8.

Quantitative Results. Table 1 compares our proposed method with three
interpolation methods and two learning-based techniques in terms of PSNR
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(Peak Signal to Noise Ratio) and SSIM (Structural Similarity). PSNR is a well-
known metric for image quality assessment which is inversely proportional to
Mean Square Error. SSIM also measures the the similarity between two images
and is correlated with quality perception in human visual system. In terms of
PSNR, DenseNet yields 2.08, 1.93 and 1.14 average improvements over Nearest,
Bilinear and Bicubic interpolation methods across all scale factors, respectively.
For learning-based approaches, DenseNet outperforms A+ [14] and SRCNN [1]
in terms of average SSIM by 0.020 and 0.019 over all scale factors, respectively.

Table 1. Quantitative results. Average PSNR and SSIM scores for scale factors ×2,×4
and ×8 on 73 test images.

Nearest Bilinear Bicubic A+ SRCNN DenseNet

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

×2 35.32 0.881 34.21 0.849 35.80 0.908 36.21 0.925 35.54 0.930 38.57 0.950

×4 31.64 0.658 32.38 0.707 32.87 0.755 33.00 0.781 33.01 0.778 33.32 0.801

×8 30.59 0.528 31.40 0.586 31.70 0.615 31.74 0.636 31.80 0.636 31.90 0.651

4 Conclusion

Developing smaller hardware for medical imaging devices has several advantages
such as increased portability and reduced patient discomfort. However, hardware
miniaturization comes at the expense of reduced image quality. In this prelim-
inary study, we obtained encouraging results to support that software-based
methods can be used to counteract the loss of image quality due to miniaturized
device components. Compared to common interpolation methods, our qualita-
tive and quantitative results indicate that a densely connected convolutional
neural network can significantly yield higher PSNR and SSIM scores, resulting
in super-resolved images of higher quality. In future work, we will focus on how
super-resolved images, compared to low-resolution images, can be advantageous
to clinical and research applications. For example, super-resolution images may
be used as input to automated machine-learning based disease classification.
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