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Abstract. For a plane symmetric object we can find two views—
mirrored at the plane of symmetry—that will yield the exact same image
of that object. In consequence, having one image of a plane symmetric
object and a calibrated camera, we can automatically have a second,
virtual image of that object if the 3-D location of the symmetry plane is
known. In this work, we show for the first time that the above concept
naturally extends to transmission imaging and present an algorithm to
estimate the 3-D symmetry plane from a set of projection domain images
based on Grangeat’s theorem. We then exploit symmetry to generate a
virtual trajectory by mirroring views at the plane of symmetry. If the
plane is not perpendicular to the acquired trajectory plane, the virtual
and real trajectory will be oblique. The resulting X-shaped trajectory
will be data-complete, allowing for the compensation of in-plane motion
using epipolar consistency. We evaluate the proposed method on a syn-
thetic symmetric phantom and, in a proof-of-concept study, apply it to
a real scan of an anthropomorphic human head phantom.
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1 Introduction

Symmetry is a powerful concept with applications ranging from art to physics
and mathematics [1]. This manuscript is concerned with symmetry in computer
vision where we consider a theoretically sound yet surprisingly little known prop-
erty of symmetric objects: when imaging a symmetric object using a calibrated
camera, knowledge of the 3-D symmetry plane yields a second, virtual camera
that corresponds to a mirrored version of the image seen by the true camera.
This circumstance enables metric 3-D stereo reconstruction of symmetric objects
using a single calibrated camera [2–4].
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For the first time, we demonstrate that the above property naturally extends
to transmission imaging, i. e. X-ray fluoroscopy, and devise image-based algo-
rithms that exploit this circumstance to estimate intra-scan motion in circular
C-arm cone-beam computed tomography (CBCT). In CBCT imaging, all cam-
era positions are calibrated suggesting that a virtual source trajectory becomes
available once the 3-D symmetry plane is known. We show that (1) this plane
can be estimated efficiently from multiple projective images and (2) circular tra-
jectories in a plane oblique to the plane of symmetry contain information that
substantially benefits motion detection using recent consistency conditions.

2 Methods

2.1 Epipolar Consistency Conditions

Theory: In CBCT an X-ray source radially emits photons, that—after
attenuation—are registered at a detector. The attenuation process for a ray
is described by an integral. However, due to the radial structure of the rays,
integrating along a detector line does not result in the Cartesian plane integral
of the underlying object f but differs by a radial weighting.
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Fig. 1. Schematic drawing of a scene including two projections.

Grangeat’s theorem describes the connection between this weighted integral
and a plane integral—i. e. the 3-D radon value Rf(n, d) describing the integral
along a plane with normal n ∈ S2 at distance d. Using a derivative operation the
radial weighting can be canceled out. Grangeat defined an intermediate function
Sλ(n) that is calculated from projection data and is related to the derivative of
the 3-D radon transform

Sλ(n) =
∫

S2
δ′(x�n)gλ(x)dx =

∂

∂d
Rf(n, d)|d=c�

λ n , (1)

where δ′(·) describes the derivative of the Dirac delta distribution, gλ(x)
describes a single value on the detector with λ the projection index, cλ the
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source position and x a vector from the source to a detector pixel. The geom-
etry for two projections is visualized in Fig. 1. A detailed derivation of Eq. (1)
can be found in [5], and some simplifications are discussed in [6]. From Eq. (1)
it directly follows that two projections a, b must satisfy

Sa(n) = Sb(n) ∀n ∈ S2 : c�
b n = c�

a n. (2)

If the geometric calibration is wrong, e. g. due to object motion, Eq. (2) will not
hold. Thus, we can use it as a measure of inconsistency. The global indexing by
the plane normal n can be replaced by a local projection-pair-dependent indexing
per the epipolar geometry. This particular sampling of the intermediate function
is commonly denoted as epipolar consistency (EC) [6] and allows to efficiently
evaluate redundant values only based on the corresponding projection matrices
P a and P b, allowing the reformulation of Eq. (2) to

Sa(P a,P b) = Sb(P b,P a), (3)

where S denotes the array of intermediate values computed from S.

Short Scans and the Circular Trajectory: State of the art head imaging protocols
for CBCT consist of a circular trajectory of 496 projections. Hereby the source
detector gantry rotates around the patient covering a 200◦ segment. All source
positions within the trajectory lie on a plane, typically referred to as trajectory
plane. We define this plane coincident with the x,y-plane.

Rigid patient motion or geometry misalignment can be estimated and com-
pensated for using EC [7–9]. This is achieved by finding a rigid transformation T i

for each projection matrix P i, accounting for the patient motion at acquisition
of projection i. The motion is expected to be compensated, when the inconsis-
tency between all projections is minimal. The result of motion estimation is a
set of rigid transformations T = [T 1, . . .T 496] that satisfy

T̂ = arg min
T

496∑
a,b=1

‖Sa(P aT a,P bT b) − Sb(P bT b,P aT a)‖2 . (4)

However, there are theoretical limitations due to the geometry of the circular
trajectory. Most radon planes of the object that include two source positions
are almost parallel to the trajectory plane. As the consistency is based on the
radon value, only motion that steps out of the radon plane is detectable. As
a consequence only out-plane motion (rx, ry, tz) can be estimated well, while
in-plane motion (tx, ty, rz) cannot be estimated robustly [7]. In the following,
we show that we can exploit symmetry to generate a short scan-like trajectory
which is data complete and, thus, beneficial for estimation of in-plane motion.

2.2 Symmetric View Augmentation

Symmetry in Transmission Imaging: Consider a plane-symmetric scene as
depicted in Fig. 2. The two points xa ∈ P

3 and xb ∈ P
3 are symmetric to the
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z,y-plane. This bilateral symmetry relation can be expressed by an involutive
isometric transformation F—i. e. a reflection matrix—as

xa = F xb xb = F xa, (5)

where F ∈ R
4×4 only flips the sign of the x component. Since F is an isometric

transformation we find the mirrored projection matrix as PF (cf. Fig. 2). The
resulting image on the right detector will be the projection of the points xa and
xb under P and the resulting image on the left detector will be the projected
points xa and xb under PF giving

ua = Pxa ub = Pxb u′
a = PFxa u′

b = PFxb. (6)

Inserting the symmetry relation given by Eq. (5) in the two leftmost equations
of Eq. 6 gives the relation

ua = Pxa = PFxb = u′
b ub = Pxb = PFxa = u′

a. (7)

This result allows to conclude that both detector images will exhibit the exact
same image. Note that this only holds since the reflection of the projection
matrix also flips the u and v axis. Consequently, a transmission image of a plane
symmetric object can be interpreted as acquired under either the projection P
or PF . This observation allows to effectively double the views of an acquisition
if the symmetry plane is known.

u′ u

v′ v
xy z

xa = Fxb
xb = Fxa

ua = Pxa

ub = Pxbu′
a = PFxa

u′
b = PFxb

P PF

F

Fig. 2. Visualization of a plane symmetric scene.

Symmetry Plane Estimation: We apply EC (cf. Eq. (4)) to find the reflection F ′

that represents the most consistent transformation, which is—by definition—the
reflection at the symmetry plane. To optimize for a certain symmetry plane, we
need to find the transformation describing F ′, which is given by F ′ = TFT−1,
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with T being a rigid transformation. The reflection F ′ is then found by optimiz-
ing for T̂ minimizing the inconsistency defined as

T̂ = arg min
T

N∑
a,b=1

∥∥Sa(P aTFT−1,P b) − Sb(P b,P aTFT−1)
∥∥
2
, (8)

where N is the number of projections used for finding the symmetry plane.
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Fig. 3. Visualization of X-trajectory. The acquired trajectory is embedded in the blue
trajectory plane (blank dots) and the mirrored virtual trajectory is embedded in the
red trajectory plane (solid dots).

The X-Trajectory: If the symmetry plane of the scanned object is oblique to the
trajectory plane of a short scan by an angle α as visualized in Fig. 3, the mirrored
trajectory plane will be rotated to the acquired trajectory plane by 2α. Thus,
for adequate angles α, the combined trajectory fulfills Tuy’s condition and the
short scan becomes data complete. This in turn enables the use of Grangeat’s
theorem to detect in-plane motion.

(a) (b) (c) (d)

Fig. 4. (a): Slice through the symmetric phantom. (b): Digitally rendered radiographs
(DRR) of the phantom. (c): Aligned reconstruction of anthropomorphic head phantom.
(d): raw projection data from a short scan of the head phantom.
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2.3 Experiments

Data: To evaluate our method we synthetically generated a plane symmetric
phantom, consisting of four small balls, and two half spheres (cf. Fig. 4a). From
this phantom, a short scan is simulated in silico (cf. Fig. 4b). The second dataset
is a short scan acquired from a real anthropomorphic human head phantom using
a robotic C-arm system (Artis zeego, Siemens Healthcare GmbH, Germany).
The phantom is placed, such that the expected symmetry plane is oblique to
the trajectory plane. As expected in a real clinical case, the head phantom does
not exhibit a perfect plane symmetry. A slice through the reconstruction and
projections from the acquired short scan of the head are shown in Figs. 4c and
4d, respectively.

Estimation of Symmetry Plane: Using the synthetic and real datasets, we first
estimate the symmetry plane. The plane is found from projection domain images
only by minimizing Eq. (8) using the Nelder-Mead method. The optimization
searches for the symmetry plane parameters described by three DoF.

Application to Rigid Motion: To study the impact of the X-trajectory in depen-
dence of α on in- and out-plane motion, we add a rigid spline motion to each
motion parameter. The motion amplitude is in the range of ±0.3 mm or degree,
respectively, and distributed only in the central part of the trajectory, where no
opposing views are available. Then we compute combined consistency grids of
the motion affected trajectory using the synthetic phantom. The grid is build
up by a (N ×N) matrix C, where each element cab denotes the consistency
between views a and b. The lower-left triangle of the consistency grid denotes
the conventional EC (CEC) computed from two views on the circular trajectory.
The upper-right triangle is computed as the EC between an acquired view a and
a mirrored view b, which we denote as mirrored EC (MEC).

In addition we inspect the inconsistency induced by an rz motion pulse dis-
tributed over view 238–288 on the acquired human head phantom consisting of
496 views. We compare the CEC solely computed from the short scan, epipolar
consistency between mirrored and acquired view (MEC) and a combination of
both (combined CEC and MEC).

3 Results and Discussion

Estimation of Symmetry Plane: The estimated and ground truth symmetry
plane parameters for the synthetic phantom are listed in Table 1. Estimation
succeeded with very high accuracy.

The head phantom, while not perfectly symmetric, exhibits a well defined
symmetry plane that was estimated very robustly. A reconstruction aligned w.r.t.
the symmetry plane is depicted in Fig. 5.
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Fig. 5. Reconstruction of acquired head phantom. The volume is aligned to the sym-
metry plane (white line) and shown from an axial and coronal view.

Table 1. Ground truth symmetry plane parameters (normal and signed distance from
origin) of synthetic phantom and estimated symmetry plane parameters.

nx ny nz d

Ground truth 0 1 0 0

Estimation 0.0000926 0.9999999 0.0000005 0.0000822

Application to Rigid Motion: Comparing upper and lower row of Fig. 6 that
correspond to α = 0◦ and α = 30◦, respectively, the impact of the X-trajectory
is evident. The CEC (lower left triangle of the grid) detects inconsistency within
out-plane parameters (three rightmost columns) while in-plane motion (three
leftmost columns) is not detected well. Using MEC and an angle 2α = 60◦

between the acquired and mirrored trajectory plane, prominently reveals in-
plane motion.

rz tx ty rx ry tz

rz tx ty rx ry tz

Fig. 6. Inconsistency due to motion in the trajectory using the synthetic phantom.
Bright pixels encode a high inconsistency and dark regions encode consistent view
pairs. Upper row: α = 0◦, lower row: α = 30◦.

Figure 7 shows the different consistency measures (CEC, MEC, combined
CEC and MEC) responding to a motion impulse on the acquired data. All mea-
sures are able to detect large scale motion. However, using CEC the global
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Fig. 7. Sensitivity of consistency measure to motion impulse. Left column: CEC. Mid-
dle column: MEC. Right column: combined CEC and MEC.

optimum is displaced by 0.2◦. The MEC optimum is displaced by 0.03◦, com-
bined CEC and MEC shows a displacement of 0.06◦, suggesting that, in this
setup, MEC is more accurate than CEC by a factor of 10.

4 Conclusion

We presented the concept of plane symmetry for transmission imaging and pro-
vided an algorithm to estimate the 3-D plane of symmetry based on projec-
tion images only. In combination with a short scan trajectory oblique to the
symmetry plane, an X-shaped trajectory arises that is associated with several
benefits. For adequate angles α, both in- and out-of-plane motion directions are
detectable using Grangeat’s theorem. This property naturally arises from the
observation that the X-trajectory is Tuy-complete. We have evaluated the pro-
posed algorithm on a real scan of an anthropomorphic head phantom. Despite
being only partially symmetric, the proposed concept of exploiting symmetry
was still found applicable. Future research is needed to find effective optimization
strategies to estimate complex motion patterns. We conclude that symmetry is
a powerful concept in transmission imaging with the potential to benefit diverse
imaging problems that make use of consistency condition such as calibration,
beam hardening- and truncation-correction.

Disclaimer: The concepts and information presented in this paper are based
on research and are not commercially available.
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