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Abstract. The quantification of facial dysmorphology is essential for the
detection and diagnosis of genetic conditions. Facial analysis benefits from 3D
image data, but 2D photography is more widely available at clinics. The aim of
this paper is to analyze 3D facial dysmorphology using unconstrained (uncali-
brated) 2D pictures at three orientations: frontal, left and right profiles. We
estimate a unified 3D face shape by fitting a 3D morphable model (3DMM) to
all the images by minimizing the differences between the 2D projected position
of the selected 3D vertices in the 3DMM and their corresponding position in the
2D pictures. Using the estimated 3D face shape, we compute a set of facial
dysmorphology measurements and train a classifier to identify genetic syn-
dromes. Evaluated on a set of 48 subjects with and without genetic conditions,
our method reduced the landmark detection errors obtained by using a single
photograph by 44%, 48%, and 49% on the frontal photograph, left profile, and
right profile, respectively. We achieved a point-to-point projection error of
1.98 ± 0.38% normalized to the size of face, significantly improving
(p � 0.01) the error obtained with state-of-the-art methods of 4.17 ± 2.83%.
In addition, the geometric features calculated from the 3D reconstructed face
obtained an accuracy of 73% in the detection of facial dysmorphology associ-
ated to genetic syndromes, compared with the error of 58% using state-of-the-art
methods from 2D pictures. That accuracy increased to 96% when we included
local texture information. Our results demonstrate the potential of this frame-
work to assist in the earlier and remote detection of genetic syndromes
throughout the world.
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1 Introduction

Each year, nearly one million children are born with a genetic condition. The pheno-
type variability among genetic syndromes and among populations with different age
and/or ethnical background often causes delays and errors in their identification and
diagnosis, which can translate into irreversible injuries and even death. The reported
average accuracy in the detection of one of the most studied genetic syndromes (Down
syndrome) by a trained pediatrician is as low as 64% [1], so methods for their early
detection are critical [2].

New developments in the analysis of facial dysmorphology from photographic data
have shown promising results in genetic syndrome detection [3, 4]. However, two-
dimensional (2D) photography only provides a projection of the patient’s face in one
plane, and therefore quantification of dysmorphology from 2D photography is sensitive
to the orientation of the patient’s face with respect to the camera. To overcome these
limitations, some works [5, 6] have explored the use of three-dimensional (3D) pho-
tography to quantify facial dysmorpholgy. However, the use of 3D photography to screen
children in routine clinics is not practical because of the need for a dedicated area in the
clinics, the cost of the equipment, and the limited access to it in developing countries.

To address this challenge, we propose a novel method to use the 3D shape of the
face estimated from three views: one frontal and two profiles (left and right) uncon-
strained 2D photographs (uncalibrated images acquired using a smartphone).

Recent works on 3D face shape estimation from 2D pictures use a variety of
techniques, such as landmark-based [7], shape-from-shading-based [8] and learning-
based [9, 10] methods. Although these methods have revolutionized 3D face recon-
struction using a single image, they struggle to accurately locate feature points at the
face boundaries and the ears. The work [11] tried to mitigate this problem by using
large data collections including multiple images acquired at different poses, which only
focused on the frontal part of the face and optimized each picture independently.

Fig. 1. Workflow of the proposed method to identify facial dysmorphology associated to
genetic syndromes from unconstrained frontal and profile photographs of a patient. Note the
landmarks used on the frontal and profile photographs. The pose parameters Pl; l 2 1; 2; 3f g, for
the lth 2D photograph, and the shape coefficients b are iteratively optimized.
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In this paper, we estimate the 3D face shape by integrating information from three
views of the same subject. First, we use a unified 3D morphable model (3DMM) [12] to
estimate the 3D locations of a set of landmarks from the 2D images by minimizing the
difference between the observed positions of the landmarks in the 2D images and the
projections of their corresponding predicted 3D positions. Then, from the reconstructed
3D face, we calculate a set of geometric features, and we use them together with the
texture information around those landmarks to train a classifier to quantify facial
dysmorphology and to detect genetic syndromes.

2 Methods

2.1 Generic Face Model Estimation

To reconstruct the 3D face shape of a subject from different 2D pictures, we used the
3DMM Basel Face Model (BFM) [12], which was built from 3D scans of 100 male and
100 female faces using principal components analysis. We selected a set of vertices on
the 3DMM corresponding to the landmarks defined on the 2D face images as shown in
Fig. 1. In addition to the 68 automatic landmarks detected in the frontal images based
on [13], we incorporated a set of 8 manual landmarks to better describe the nose region.
We also placed 25 landmarks on each profile image.

We used a scaled orthographic perspective transformation to fit the 3DMM to the
2D pictures, similar to the approach presented in [7] for a single image. With this
approach, the 2D projections of the 3D vertices do not depend on the distance from the
camera, but only on a uniform scale s 2 R

þ . That scale is given by the ratio of the
focal length of the camera and the mean distance from the camera to the object. Thus,
the projected 2D position of a 3D point v ¼ x; y; zð ÞT from the 3DMM is

p ¼ s
1 0 0
0 1 0

� �
Rrotvþ t

� �
; ð1Þ

where Rrot 2 R
3�3 is the 3D rotation matrix and t 2 R

2 is the 2D translation. The
coordinates of vertex v in the 3DMM can be expressed as v ¼ Pbþ �u, where b 2 R

S

are the shape parameters, �u 2 R
3n is the mean shape with n vertices, and P 2 R

3n�S are
the S principal components.

The 3DMM was fitted to each 2D image l by minimizing the projection error (El),

El ¼ 1
n

Xn
i¼1

kqli � sl Rlvli þ tl
� �k2F ; ð2Þ

where l 2 1; 2; 3f g represents the frontal (index 1) and two profile 2D images (indices 2
and 3), �k kF is the Frobenius norm, qli represent the 2D landmarks on the image, and
vli ¼ Pl

ibþ �uli are the selected corresponding vertices on the 3DMM, Rl represents the
rotation which holds the first two rows in Rrot (Eq. 1), and tl and sl are the translation,
and scaling of the l th image, respectively.
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Since the optimization of Eq. 2 for the three images is not a convex problem, we
solved it in three steps: (A) first we estimated the pose parameters (Rl; tl; sl) for each 2D
image; (B) then we estimated the shape coefficients (b) as a linear least squares
problem; and (C) we refined the pose parameters and shape coefficients simultaneously
as a nonlinear least squares problem.

(A) Pose Estimation

We made an initial estimation of the pose parameters Rl, tl, and sl using the constrained
pose from the orthography and scaling method [7]. With this approach, we approxi-
mated the perspective projection with a scaled orthographic projection (Eq. 1) by
solving the following linear system

argmin
Rl;tl;sl

1
2

C/�Hk k22; ð3Þ

where C ¼ slRlPl
i is the projected position of the selected vertices on the 3DMM in

homogeneous coordinates, pi ¼ xi; yið ÞT are the observed landmarks in the 2D images,
H ¼ pli � sl Rl�uli þ tl

� �
is the concatenated position of the n landmarks on the l th 2D

image in corresponding to the 3D vertices, and �uli is the selected 3D vertices. /
represents the estimated coefficients, which are used to extract our pose parameters
Rl; tl; sl. This model allows for 6 degrees of freedom, with 3 coefficients for 3D rotation,
2 for translation in the 2D projection plane, and 1 for isotropic scaling.

Unlike our formulation from Eq. 2, in Eq. 3, we represent the rotation about each
axis as a different scalar angle, instead of one single matrix representing all rotations.
We used singular value decomposition to ensure that the estimated Rl was a valid
rotation matrix. After the initial pose estimation using Eq. 3, we refined the pose
parameters by minimizing the projection errors El in Eq. 2 with respect to themselves
using the trust-region reflective algorithm [14].

(B) Shape Estimation

Once the pose parameters were calculated, we estimated the shape coefficients b by
concatenating the locations of the observed landmarks in the 2D images of the 3 views
of a subject, and minimizing the difference between these locations and the 2D pro-

jections of their corresponding vertices in the 3DMM iteratively using
P3
l¼1

El with

respect to b. During optimization, the shape parameters were constrained to the range
�3k; 3k½ � to ensure a plausible shape, where k is the eigenvalue associated to each
principal component in the 3DMM. The 2D projections for the l th image were com-
puted using their own pose parameters (Rl, tl, and sl), while the shape coefficients for
each of the 3 images was estimated simultaneously.
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(C) Global Refinement

Since different pose parameters were optimized for the different 2D images, we per-
formed a bundle adjustment to iteratively align the 3 views (frontal and two profile
images). We used the trust-region reflective algorithm to solve the following non-linear
optimization:

argmin
b;Rl;tl;sl

X3
l¼1

wlEl þ d
Xk
i¼1

biffiffiffiffi
ki

p
� �2

 !
; ð4Þ

where
Pk

i¼1 bi=
ffiffiffiffi
ki

p� �2
is the shape prior adopted from [7] to ensure the plausibility of

the solution, k is the number of principal components of the 3DMM, k is the eigenvalue
of the 3DMM, wl is the weight of the l

th image calculated as a function of the number
of landmarks in the image similar to [7], and d is the weight for the shape prior as used
in [7]. Both the pose parameters and the shape coefficients were estimated simulta-
neously using Eq. 4, thus obtaining the final face shape estimation given by the shape
parameters b:

2.2 Identification of Dysmorphology Associated to Genetic Syndromes

Once we estimated the 3D shape of the face, our goal was to detect facial dysmor-
phology associated to genetic syndromes. To that end, we first computed the set of 24
facial features as shown in Fig. 2, which have been shown to be relevant to identify
genetic syndromes in [3, 4]. Unlike these previous works, our approach used the
estimated 3D geometric measurements instead of their projection in 2D.

As presented in [3, 4], appearance information around each landmark provides
meaningful information to detect genetic syndromes. For that reason, we followed the

Fig. 2. Geometric measurements used to identify facial dysmorphology. dhorizontal and dvertical
were used to normalize horizontal and vertical distances, respectively.
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approach described in [4] to quantify the texture around each landmark in the 2D
photographs. In summary, we calculated the local binary pattern (LBP) of the patch
around each landmark. Then, we used a 2D extension of linear discriminant analysis
[4] to convert this LBP to a single score at each landmark (Fig. 2, yellow points),
which describes how likely the appearance is to describe dysmorphology.

From all the geometric and texture features, we first selected the most discrimi-
native ones using recursive feature elimination, thus training a linear support vector
machine classifier and recursively eliminating the features with the lowest weight.
Then, we evaluated the accuracy of our approach to identify facial dysmorphology
associated to genetic syndromes using a leave-one-out cross-validation.

2.3 Datasets

We collected 3 2D photographs (frontal, left and right profile) from a group of 48
subjects (22 male and 26 female, average age 4 ± 3 years, age range 1 month to 12
years) of diverse ancestry, using an in-house smartphone app. Twenty-four subjects
presented genetic syndromes (including Down, Noonan, Turner, Wolf-Hirschorn
syndromes, etc.), and the other 24 cases were healthy. The subjects of both groups were
matched by age, ethnicity, and gender.

3 Experimental Results and Discussion

To evaluate the accuracy estimating the 3D shape of the face, we computed the point-
to-point root mean square error (RMSE) and the standard deviation (SD) between the
2D projected position of the vertices in the estimated 3D face shape and their corre-
sponding locations observed on the 2D images. We normalized all differences by the
face size, similar to [3, 13].

Table 1 shows the RMSE for the face shape estimated using one photograph, 2
photographs, or 3 photographs. We obtained an average reconstruction error of
2.66 ± 0.43% using the 3 photographs simultaneously, improving by 44%, 49%, and

Table 1. Errors obtained by estimating the 3D face using different combination of the fontal (F),
left (L), and right (R) profile images. Lower value is desirable.

Data RMSE ± SD (%)
Frontal Right profile Left profile Average of all views

F 1.92 ± 0.59 9.02 ± 1.97 8.93 ± 1.62 4.72 ± 0.89
R 5.00 ± 1.05 3.25 ± 2.09 7.90 ± 2.93 5.23 ± 1.45
L 4.96 ± 1.31 7.89 ± 2.48 2.92 ± 1.58 5.13 ± 1.33
R+L 4.68 ± 0.72 3.49 ± 0.91 3.35 ± 0.82 4.18 ± 0.61
F+L 2.41 ± 0.52 7.32 ± 1.15 3.79 ± 0.87 3.66 ± 0.53
F+R 2.52 ± 0.53 4.14 ± 1.04 7.11 ± 1.02 3.75 ± 0.54
F+R+L 1.98 ± 0.38 3.84 ± 1.02 3.53 ± 0.74 2.66 ± 0.43
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48% the results obtained on all 3 views using only the frontal, right, and left profile
photographs, respectively. These improvements were statistically significant
(p-value < 0.001 for all) as determined by the Wilcoxon signed-rank test. As it may be
expected, the lowest error at each individual view (frontal or profile) was obtained
when using only the photograph of that view. Unsurprisingly, results using the 3 views
are slightly worse than using a single view because of the simultaneous fitting to all
views, but there is a substantial decrease in standard deviation, which indicated better
stability of the method.

Furthermore, we compared the estimated faces resulting from our proposed method
with those obtained using state-of-the-art methods [7, 10]. Since those methods were
designed to work only with single images, for a fair comparison, only the frontal image
of each subject was used. In addition, the method from Bas et al. [7] was revised to use
our landmark correspondence. As shown in Table 2, our method outperforms the state-
of-the-art methods. An example of the landmarks estimated with the proposed method
is shown in Fig. 3, where we can observe low differences between the estimated
landmark position projected on the 2D photographs and their true location. Results
show that the proposed method provides a closer face shape reconstruction to the
observations from the 2D photographs.

Table 2. Comparisons of RMSE between the proposed and the state-of-the-art methods. (%)

Bas et al. [7] Zhu et al. [10] Proposed

RMSE±SD 4.17 ± 2.83 5.27 ± 2.81 1.98 ± 0.38

Fig. 3. The faces reconstructed using different methods. The right column shows the acquired
2D photographs. Top row: the 2D projected location (red) of the vertices of the estimated 3D face
shape and the ground truth (green) in the 2D photographs. Bottom row: the estimated 3D face
shapes. The red dots indicate the corresponding vertices to the 2D photographs.
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Finally, cross-validation of the classifier trained using the geometric measurements
estimated from our 3D reconstructed face shape reported an accuracy of 73%, com-
pared to the results of 58% that we obtained using the geometric measurements from
the 2D photographs (p-value < 0.001). Our accuracy increased to 96% (with sensitivity
96%, specificity 100%) when we combined our estimated 3D measurements with the
local texture information.

A potential limitation is the use of a statistical model built from an older population,
which is a parameter that will be easily fixed when more data are available. However,
the innovation in our method and formulation is independent on what statistical model
is used. Even with such limitation, our method outperformed state-of-the-art
approaches.

4 Conclusions

We presented a method for an accurate reconstruction of the 3D shape of the face from
unconstrained 2D photographs using a statistical 3D morphable model. Our method
achieved the lowest reconstruction error compared with other state-of-the-art approa-
ches on single photographs. Moreover, we showed that the 3D measurements estimated
with our framework outperformed the results obtained using 2D measurements for the
quantification of facial features used to assess dysmorphology associated to genetic
syndromes. Importantly, the proposed framework does not require camera calibration,
which allowed us to acquire these pictures using a standard mobile phone. This makes
our technology easily translatable to the clinics, with the potential to assist in earlier
detection of genetic syndromes.
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