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Abstract. Multimodal imaging combining positron emission tomogra-
phy (PET) and magnetic resonance imaging (MRI) provides comple-
mentary information about metabolism and anatomy. While the appear-
ances of MRI and PET images are distinctive, there are fundamental
inter-image dependencies relating structure and function. In PET-MRI
imaging, typical PET reconstruction methods use priors to enforce PET-
MRI dependencies at the very fine scale of image gradients and, so, can-
not capture larger-scale inter-image correlations and intra-image texture
patterns. Some recent methods enforce statistical models of MRI-image
patches on PET-image patches, risking infusing anatomical features into
PET images. In contrast, we propose a novel patch-based joint dictio-
nary model for PET and MRI, learning regularity in individual patches
and correlations in spatially-corresponding patches, for Bayesian PET
reconstruction using expectation maximization. Reconstructions on sim-
ulated and in vivo PET-MRI data show that our method gives better-
regularized images with smaller errors, compared to the state of the art.

Keywords: PET-MRI · Reconstruction · Joint generative model
Joint dictionary model · Patches · Sparsity
Bayesian Markov random field · EM

1 Introduction and Related Work

Multimodal imaging systems [14,19] incorporating positron emission tomogra-
phy (PET) and magnetic resonance imaging (MRI) acquire both functional and
anatomical information to improve clinical diagnosis, therapy, and scientific stud-
ies in the human body (e.g., neurology and oncology). PET and MRI images
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have distinctive appearances. The intrinsic spatial resolution of radioactivity in
PET, typically 4–6 mm [1], is far lower than the anatomical resolution in MRI,
typically 1–1.5 mm. Spatial resolution in PET is limited by positron range, non-
collinearity of the annihilation photons, scatter inside the scintillation crystals,
finite crystal dimension, interaction depth, etc. In PET-MRI, PET reconstruc-
tion is challenged by the stochasticity in gamma-ray emission and the reliability
of attenuation-map estimation without the computed tomography (CT) images;
thus, it typically relies on statistical prior models on the MRI and PET images.

After expectation maximization (EM) based maximum-likelihood (ML) esti-
mation for PET reconstruction [15], edge-preserving smoothness priors and other
gradient based penalties within the EM framework were exploited [7]. The
method in [4] relies on hierarchical image segmentation, while that in [11] uses
voxel-reweighted fidelity based on Fisher information. Some methods use edge
information in the associated anatomical image through edge locations [5,6,8,9]
or mutual information of voxel intensities [16]. However, all these priors [5–
9,11,16] use very local neighborhoods to enforce piecewise-smooth images and
cannot capture larger-scale inter-image (structure-function) correlations and
intra-image texture patterns in PET images or associated MRI images. In con-
trast, we propose a framework to model regularity within and statistical depen-
dencies across spatially-corresponding patches in PET and MRI.

For dynamic PET, recent methods [12,13] use hidden Markov random field
(MRF) label priors with a Gaussian mixture model for intensities. Some meth-
ods [20] use spatially-varying smoothing using kernel similarity on time curves
and others [10] use a Bowsher prior to capture edge information from the anatom-
ical image. However, these methods [10,12,13,20] do not capture spatial depen-
dencies across PET and MRI. So, we propose a joint patch-based dictionary as a
MRF prior on the PET-MRI image pair for Bayesian PET reconstruction. Early
works on patch-based (multimodal) medical image denoising are in [2,3].

Very recent works [17,18] on PET reconstruction use a patch dictionary
learned from MRI images, but this strategy risks over/underfitting the functional
features of PET images by the anatomical features of MRI. In contrast, we
propose a joint generative model, based on joint patch regularity, for the pair of
PET and MRI images and leverage the joint model to reconstruct PET images.
Our model subsumes learning PET image patch statistics by jointly learning
statistics of PET image patches and spatially-corresponding MRI patches.

We propose a novel joint generative model for the pair of images of PET
radiotracer activity and MRI magnitude. We rely on a joint patch-based sparse
dictionary model formulated as a MRF prior for Bayesian PET reconstruction
using EM. While our model learns the fine-scale and larger-scale regularity in
patches in PET and MRI images individually, it also learns correlations between
spatially-corresponding patches in MRI and PET images. Reconstructions on
simulated and in vivo PET-MRI show that our method produces (i) qualita-
tively better regularity and (ii) quantitatively lower errors and higher structural
similarity (SSIM), over the state of the art.
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2 Methods

We describe our novel generative model on joint PET-MRI, relying on a sparse
joint-dictionary model, and our Bayesian PET image reconstruction using EM.

2.1 Generative Model for PET-MRI Using a Joint Sparse
Dictionary

We propose a joint MRF-based sparse dictionary model for the pair of MRI
magnitude and PET activity images. Let X model the MRI image and Y model
the PET activity image, in a common spatial coordinate frame. Let (X,Y ) be
a MRF with a neighborhood system N := {Ni}Ii=1, where Ni is the neighbors
of voxel i. For any voxel i in the MRI or PET images, its neighbors include all
other voxels in the MRI image within a distance dX and all other voxels in the
PET image within a distance dY . This paper sets dX := 4 mm, dY := 8 mm.
This neighborhood system allows us to model the MRF’s Gibbs energy in terms
of square-shaped cliques (patches) Pi of width 5 mm (dX +1) in the MRI image
and patches Qi of width 9 mm (dY + 1) in the PET image. We model the PET-
MRI joint patch (XPi

, YQi
), at each voxel i, as a sparse linear combination of

template patches in the joint dictionary A with J atoms, where the j-th atom
comprises a MRI template patch AX

j paired with a PET template patch AY
j .

Because the PET and MRI images are non-negative, we model the components of
atoms AX

j , AY
j as non-negative and we enforce non-negativity on the coefficients

in the dictionary fit. The prior P (X,Y |A) := η exp(−G(X,Y,A)), where the
Gibbs energy G(X,Y,A) :=

∑I
i=1 minci�0 β‖XPi

− AXci‖22 + (1 − β)‖YQi
−

AY ci‖22 + λ‖ci‖1, ci is the common coefficient vector used for fitting patches
in both MRI and PET images at voxel i, ci � 0 constraints each coefficient
within ci to be non-negative, and η is the normalizing constant. Free parameter
β ∈ [0, 1] balances the quality of fit in the MRI and PET images, adapted to
their relative noise levels. Free parameter λ ∈ R

+ controls the sparsity of the
dictionary coefficients. We tune free parameters β, λ using cross validation.

Learning a Joint PET-MRI Dictionary. We learn the joint dictionary
A, comprising atom pairs {(AX

j , AY
j }Jj=1, from a training set of T high-

quality PET-MRI images {(X̊t, Y̊ t)}Tt=1, as the maximum-a-priori estimate
arg maxA

∏T
t=1 P (X̊t, Y̊ t|A) subject to scale constraints on the atoms ‖AX

j ‖22 +
‖AY

j ‖22 ≤ 1, ∀j, positivity constraints on the atoms AX
j � 0, AY

j � 0,∀j, and
positivity constraints on the coefficients ci � 0. Our design of the dictionary
learning (and coding) formulation leads to smooth convex problems for optimiz-
ing (i) A given c and (ii) c given A; both involve quadratic objective functions
and convex constraint sets. We solve by iterative alternating optimization of A
and c, where each update uses projected gradient descent with an adaptive step
size to ensure improvement in the objective function value. We initialize atoms
through (i) k-means++ on the subset of joint patches (X̊Pi

, Y̊Pi
) with variance

significantly higher than the noise variance, excluding constant patches, and



Joint PET+MRI Patch-Based Dictionary for Bayesian PET Reconstruction 341

(ii) adding two constant atoms each modeling patches in MRI or PET that are
constant or have the minimum intensity as positive.

2.2 MAP Reconstruction of PET with Joint-Dictionary Prior, EM

Likelihood Model for PET. Given Yi as the rate of gamma-ray emission
counts at each voxel i, let αi,d be the emission fraction reaching detector d
in a ring of D detectors. We model αi,d as voxel strip integrals, as in STIR
(github.com/UCL/STIR). At detector d, let the emission rate coming from
voxel i be Yi,d := Yiαi,d and let the total emission rate be

∑I
i=1 Yi,d. Let

the observed emission at detector d be Zd ∼ Poisson(
∑I

i=1 Yi,d). Equivalently,
let the part of the observed emission at detector d coming from voxel i be
Zi,d ∼ Poisson(Yi,d). Then, the likelihood P (Z|Y ) :=

∏D
d=1 P (Zd|

∑I
i=1 Yi,d) =

∏D
d=1

∏I
i=1 P (Zi,d|Yi,d).

Given the observed PET data {zd}Dd=1, the observed MRI image X, and the
joint dictionary A, our reconstructed PET activity image Y is the MAP estimate:
arg maxY P (Y |z, x,A) = arg maxY P (z|Y )P (Y, x|A).

EM for PET Image Reconstruction. We propose to solve the MAP esti-
mation problem for parameter Y , given observations {zd}Dd=1, using EM. We
model Zi,d as the hidden variable. We initialize the iterative EM optimiza-
tion with the PET image estimate based on filtered back-projection followed
by standard EM [15] without any priors. At iteration m, let the current esti-
mate of the PET image be ym. The E step designs the function Q(Y ; ym) :=
EP ({Zi,d}I,D

i=1,d=1|ym,{zd}D
d=1;X,A)[log P (z|Y ) + log P (Y, x|A)], where the expectand

is the sum of the complete-data log likelihood and the log prior. The M step
maximizes the Q(Y ; ym) function to produce the updated reconstruction esti-
mate ym+1 using the update rule based on the one-step-late modified-EM [7]
strategy adapted to our PET-MRI joint-dictionary modeling framework. Thus,
the M step updates the reconstruction estimate, for each voxel i, as

ym+1
i :=

(
D∑

d=1

ym
i αi,dzd

∑I
i=1 ym

i αi,d

)

/

(
∂G(y, x,A)

∂yi

∣
∣
∣
∣
yi=ym

i

+
D∑

d=1

αi,d

)

,∀i, (1)

where we evaluate ∂G(y, x,A)/∂yi at yi = ym
i by (i) fitting the dictionary A

to the image pair (x, ym), as dictated within G(y, x,A), to produce optimal
coefficients {c∗

i }Ii=1 (our formulation makes this is a quadratic programming
problem having efficient solvers leading to global optima) and then (ii) taking
the partial derivative of (1 − β)

∑I
i=1 ‖YQi

− AY c∗
i ‖22 with respect to yi. EM

iterations stop when the relative change in the estimates ym and ym+1 is small.

3 Evaluation, Results, and Discussion

We compare our method with 5 other reconstruction methods: (i) EM with-
out priors (MLEM) [15], (ii) EM with edge-preserving Huber-loss based MRF

http://github.com/UCL/STIR
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prior (HuberMRF), (iii) joint total variation (JTV) prior [6], (iv) parallel level
set (PLS) [5,6] prior, (v) MRI-patch dictionary prior for PET reconstruction
(MRI-Dict) [18]. For all methods relying on the information in the MRI image,
including JTV and PLS, we fix the acquired MRI image to the ground truth. For
all methods we tune the underlying free parameters to give the best results qual-
itatively and quantitatively. We evaluate on 3 datasets: (i) simulated phantom
used in [5,6], (ii) simulated BrainWeb used in [5,6], and (iii) in vivo PET-MRI.
For quantitative evaluation we use SSIM [21] and relative root mean squared
error (RRMSE), i.e., ratio of RMSE between ytrue and yestimate to RMS of ytrue.

Fig. 1. Validation: Simulated Phantom. (a1)–(a2) PET-MRI ground truth. (b),
(c), (d1)–(g1) PET reconstructions using various methods. (d2)–(g2) Residual
(reconstructed - truth) images for the results in (d1)–(g1). RRMSE: Ours 0.06,
MRI-Dict 0.10, PLS 0.09, JTV 0.08, HuberMRF 0.09, MLEM 0.18. SSIM: Ours
0.92, MRI-Dict 0.81, PLS 0.86, JTV 0.90, HuberMRF 0.84, MLEM 0.61.

Validation: Simulated Phantom. For the simulated phantom (Fig. 1(a1)–
(a2)), we sufficiently blur the PET image to reproduce the lower resolution in
PET [1], relative to MRI. The EM reconstruction without any prior (Fig. 1(b))
retains a lot of the noise compared to prior-based methods. EM with the
HuberMRF prior (Fig. 1(c)) gets rid of most of the random noise. JTV and
PLS (Fig. 1(g1), (f1)) leverage the anatomical structure in the MRI, encourag-
ing edges in the PET reconstruction to occur at the same spatial locations as
the edges in the MRI image. They improve over HuberMRF, but the gradient-
based penalty limits the quality of reconstruction of the (i) blue circular blobs,
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Fig. 2. Validation: BrainWeb-based Phantom. (a1)–(a2) PET and MRI ground
truth. (b), (c), (d1)–(g1) PET image reconstructions using various methods. (d2)–
(g2) Residual (truth - reconstructed) images for the results shown in (d1)–(g1).

(ii) red circular outside rim, and (iii) red parallel bars in the center. Using a
MRI-patch statistical model to reconstruct PET images (PET patch intensities
being significantly smoother than MRI patch intensities) results in overfitting of
the dictionary to the noise (Fig. 1(e1)). Our reconstruction (Fig. 1(d1)) using a
joint patch-based dictionary model maintains both fine-scale regularity, in the
form of smoothness, and larger-scale regularity by preservation of structures like
the straightness and separability of the red bars, circularity of the blue blobs,
and the continuity in the red outer ring. Our reconstruction has much smaller
residual magnitudes (Fig. 1(d2)–(g2)) compared to all other methods, and is
closest to the ground truth qualitatively and quantitatively (Fig. 1).

Validation: BrainWeb-Based Phantom. We simulated PET-MRI from
BrainWeb MRI and segmentation, akin to the scheme in [5], but our PET image
is much smoother than the MRI image, as exhibited in in vivo imaging. We learn
our joint dictionary A on patches from five slices and reconstruct 50 slices. Our
reconstructions (i) better preserve fine-scale and larger-scale structure (Fig. 2)
and (ii) have better RRMSE and SSIM (Fig. 4(c)), over all other methods.

Results: In vivo Brain PET-MRI. We collected data for 5 subjects using a
3T PET-MRI Siemens scanner (PET slice thickness 2 mm and T1 MRI 1 mm3

voxels). We learn the joint patch dictionary from one subject and reconstruct
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Fig. 3. Results on in vivo Brain PET-MRI. (a1)–(a2) PET and MRI ground
truth. (b), (c), (d1)–(g1) PET image reconstructions using various methods. (d2)–
(g2) Residual (truth - reconstructed) images for the results shown in (d1)–(g1).

Fig. 4. Results: Quantitative Evaluation. (a) Dictionary of MRI patches, used
by [18] (MR-Dict). (b) Our joint dictionary of PET-MRI patches (MRI patch appears
as red channel; corresponding PET patch as green channel). (c)–(d) Box plots for
RRMSE and SSIM for 50 slices from BrainWeb simulation and 4 subjects in vivo.

50 slices from the other subjects. Unlike the dictionary of MR patches in MRI-
Dict (Fig. 4(a)), our joint dictionary (Fig. 4(b)) captures regularity in individual
patches (which is distinctive for PET and MRI) and PET-MRI correlations in
spatially-corresponding patches. Our reconstructions are qualitatively (Fig. 3)
and quantitatively (Fig. 4(d)) better than all other methods.

Conclusion. We propose a novel joint generative model for the PET-MRI image
pair, relying on a joint patch-based dictionary model, formulated as a MRF prior
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for Bayesian PET reconstruction using EM. While our model learns the fine-scale
and larger-scale regularity in patches in PET and MRI images individually, it also
learns structure-function correlations between spatially-corresponding patches in
MRI and PET images. Our reconstructions on simulated and in vivo PET-MRI
improve qualitatively and quantitatively over the state of the art.
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