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Abstract. Recently, Magnetic Resonance imaging-only (MR-only) radiother-
apy treatment planning (RTP) receives growing interests since it is radiation-free
and time/cost efficient. A key step in MR-only RTP is the generation of a
synthetic CT from MR for dose calculation. Although deep learning approaches
have achieved promising results on this topic, they still face two major chal-
lenges. First, it is very difficult to get perfectly registered CT-MR pairs to learn
the intensity mapping, especially for abdomen and pelvic scans. Slight regis-
tration errors may mislead the deep network to converge at a sub-optimal CT-
MR intensity matching. Second, training of a standard 3D deep network is very
memory-consuming. In practice, one has to either shrink the size of the training
network (sacrificing the accuracy) or use a patch-based sliding-window scheme
(sacrificing the speed). In this paper, we proposed a novel method to address
these two challenges. First, we designed a max-pooled cost function to
accommodate imperfect registered CT-MR training pairs. Second, we proposed
a network that consists of multiple 2D sub-networks (from different 3D views)
followed by a combination sub-network. It reduces the memory consumption
without losing the 3D context for high quality CT synthesis. We demonstrated
our method can generate high quality synthetic CTs with much higher runtime
efficiency compared to the state-of-the-art as well as our own benchmark
methods. The proposed solution can potentially enable more effective and
efficient MR-only RTPs in clinical settings.
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1 Introduction

Medical imaging plays an important role in radiotherapy treatment planning (RTP) [1]
by providing critical information for organ/tumor localization and dose calculation.
Currently computed tomography (CT) is the primary modality, which provides electron
density information for dose calculation. Since Magnetic Resonance (MR) imaging is
more valuable in organ/tumor localization due to its superior soft tissue contrast, it has
received more and more interests in RTP. In traditional workflow, MR will be regis-
tered to a principal CT dataset [1, 2] so that its superior soft tissue contrast information
can be fused with the CT image. However, due to the imperfectness of the current
image registration techniques, registration error will bring systematic spatial uncer-
tainty [3], hence, influencing the accuracy of RTP. Recently MR-only RTP receives
growing interests since it is radiation-free and time/cost efficient. A key step in MR-
only RTP is the generation of a synthetic CT (sCT) from MR for dose calculation.

The major challenge in CT synthesizing is the intensity ambiguity of different
tissues, such as bone and air which both appear dark on MR. Traditional approaches for
CT synthesis from MR can be divided into two categories: atlas-based [4] and
segmentation-based [5]. For the atlas-based approaches, the focus is to register the MR
atlas to the patient MR, and then apply the registration transformation on the corre-
sponding CT atlas to generate the synthetic CT [6]. Segmentation-based methods [5]
segment different types of tissues from MR. A synthetic CT is then generated by filling
a constant CT intensity for each type of tissue. The main obstacles for these approaches
are the synthesis speed and registration or segmentation accuracy. Recently, some
context-aware deep learning based models are proposed [7–9] and they achieved
promising results. However, they still face two major challenges. First, standard deep
learning requires a set of perfectly registered CT-MR pairs to learn the intensity
mapping from MR to CT. However, since MR and CT images are acquired at different
time with different patient positionings and table shapes, it is very difficult to perfectly
register them, especially for abdomen and pelvic scans [10]. Thus most works [7–9]
focused on brain regions. Slight registration errors may induce large mis-matching in
the intensity space, hence, misleading the deep network to converge at a sub-optimal
CT-MR intensity matching. Second, training of a standard 3D deep network is very
memory-consuming. In practice, even with a high-end deep learning server, one has to
simplify the 3D network structure or using a patch-based sliding-window scheme [7, 9]
to accommodate large volumes of training data. The simplified network may not model
the MR-CT intensity mapping well and sliding-window scheme may sacrifice the speed
significantly.

In this work, we proposed a novel method to tackle the aforementioned challenges.
First, we designed a maxpooling loss function allowing the network to search optimal
intensity matching not only between the corresponding CT-MR patches but across their
neighborhood. This kind of “matching freedom” makes the network robust to imperfect
CT-MR registration. Second, we proposed a network consisting of multiple 2D sub-
networks (from different 3D views) followed by a 3D combination sub-network. It
dramatically reduces the memory consumption without losing the 3D context for high

Towards MR-Only Radiotherapy Treatment Planning: Synthetic CT Generation 287



quality CT synthesis. Our method generated high quality sCTs with much higher
runtime efficiency compared to the state-of-the-art and our own benchmark method.

2 Materials and Methods

2.1 Overview of Multi-view Multi-channel U-Net Structure

U-Net [11] is a deep network originally proposed for image segmentation. It has a
symmetric hierarchical structure that enables precise voxel-wise classification by
modeling cross-scale anatomical context. In our study, the U-Net is adapted to a
regression network, i.e., the output is an image with synthetic CT values. The original
U-Net has a 2D fully convolutional structure, which needs to be extended to handle the
3D nature of MR and CT images. In order to train on 3D volumes without reducing
network size and speed, we adopt a 2.5D framework (Fig. 1). Our framework consists
of two 2D-centric U-Nets (Fig. 2) corresponding to sagittal and axial views, respec-
tively. The stacked output 3D features from these two sub-nets are further combined by
a 3D combination sub-net (Fig. 5). Moreover, to deal with the unpreventable
misalignments between MR-CT training pairs for accurate model training, a max-
pooling hinge-like Huber function is designed as training loss (Fig. 3). Technical
details are explained next.

2.2 Multi-channel MR Inputs for Information Enhancement

The input of our method is the In-Phase and Out-of-phase images generated by MR
Dixon method. These images capture complementary fat and water information for
tissue differentiation. As shown in Fig. 2, for single view 2D U-Net inputs, instead of
stacking these two images at the input layer, we keep two independent channels for
each of them. In this way, the network can capture features from different MR
sequences independently for information enhancement.

2.3 Maxpooling and Hinge-like Huber Loss Function

In order to learn the intensity transformation from MR to CT, a set of registered MR-
CT pairs are needed for training. However, it is very difficult to perfectly register MR
and CT due to organ deformations, different table sizes, etc. To address this problem,
an effective loss function is proposed for the network in Fig. 2. Instead of calculating
the voxel-wise intensity differences directly between the output slice and the ground-
truth slice, a maxpooling process (Fig. 3(a)) is applied to accommodate the slight
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Fig. 1. Multi-channel multi-view U-Net based deep fully convolutional network framework.
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misalignment in a translation invariant fashion [12]. A schematic example is presented
in Fig. 4. If I1 and I2 are perfectly registered, it is easy to learn a consistent mapping
function F that maps the intensities of pixel a, b and c to aʹ, bʹ and cʹ, i.e., F(I1(a)) = I2
(aʹ), F(I1(b)) = I2 (bʹ), F(I1(c)) = I2 (cʹ); However, if I1 and I2 are not perfectly regis-
tered due to deformable or rigid registration errors, it is very difficult to learn a common
mapping function that maps the intensities of a, b and c to aʹ, bʹ and cʹ, since the
intensity transformation becomes inconsistent. By adding max-pooling in the loss
function, we essentially give some spatial freedom to the mapping function, allowing it
to map the intensity to its neighborhood, i.e., F(I1(a)) = I2 (aʹ + Daʹ), F(I1(b)) = I2
(bʹ + Dbʹ), F(I1(c)) = I2 (cʹ + Dcʹ). Thus, a consistent mapping function can be learned.
Note that the max-pooling allows different voxels to have different small D, which
address the non-systematic registration errors. The hinge-like function is also adopted
with Huber loss as the final loss function (Fig. 3(b)), also shown in Eq. (1). It
accommodates major loss and ignores minor ones.
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Fig. 2. Single view 2D U-Net (sagittal view and axial view). Multi-channel 2D MR slices (In-
phase (IP) and Out-of-phase(OOP)) are network inputs. Loss is designed as maxpooling and
hinge-like Huber loss.
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Fig. 3. (a) Maxpooling hinge-like Huber loss function for U-Net structure training. (b) Hinge-
like Huber loss function.
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where a is the 2D image slice difference between output and ground-truth CT images.

2.4 Multi-view Combination of the 2D U-Net Like Structures

Our network includes two 2D U-Nets followed by a combination network (Fig. 5).
This design is important to deal with memory limitations. With an 8 GB GPU memory,
we cannot fit a 3D 192 * 224 * 168 volume with a 3D network for training. Therefore,
we decompose the 3D volume into 2D axial and sagittal slices, respectively, which can
be easily fit into two 2D U-Nets. However, since the 2D U-Net ignores the 3D context
across neighboring slides, the output may have stitching blurring effect. (c.f. Fig. 7), To
remove the blurring effect, output feature maps of 2D U-Nets are stacked into 3D
volumes before feeding into a 3D convolution layer with kernel size 1 � 1 � 1. This
3D convolution layer effectively removes the 2D stitching blurring effect.

The overall loss function is a (empirically-set) weighted mean of maxpooling
hinge-like Huber loss from two views and a Huber loss of the 3D synthetic volume
with the ground-truth volume (2).

(a) (b) (c) (d)

Fig. 4. A schematic explanation of the impact of mis-registration to intensity transformation.
(a) Image 1 (Modality 1), (b) Perfectly registered Image modality 2, (c) Image 2 with rigid mis-
alignment, (d) Image 2 with non-rigid mis-alignment. Triangles in (a)–(d) represent the same
object. Dashed lines in (c) and (d) denote the locations of the perfectly registered Image 2.

Fig. 5. Combination Network. Single view networks include 2D U-Net structures for both axial
and sagittal view. 3D combination network takes 32 channels output 3D features from 2 single
view networks as input and output a 3D synthetic CT volume.
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L vð Þ ¼ 0:6L vð Þsagittal þ 0:33L vð Þaxial þ 0:07Huber vð Þ ð2Þ

where v is the 3D volume difference between the final output synthetic CT of the
combination net and the ground-truth CT volumes; 3D L vð Þsagittal and L vð Þaxial are the
hinge-like Huber loss maxpooled from sagittal view and axial view 2D slices
respectively; Huber vð Þ is the voxel-wise Huber loss of the 3D volume difference.

2.5 Network Training

Our network training has two stages. First, the two 2D U-Nets of axial and sagittal
views are trained independently. Then the feature maps extracted from the second last
layers of each 2D U-Net are stacked into 3D volumes and saved as input for further
training of the 3D combination network.

3 Results

Due to the lack of perfectly aligned scanned MR and CT pairs, the ground-truth CTs
are generated by a multi-atlas-based regression method [13]. The quality of the ground-
truth synthetic CT image is confirmed and accepted by experienced oncologists.
However, since the multi-atlas-based regression method [13] takes extensive time (i.e.,
more than 15 min on average) to generate the synthetic CT image, it has limitation in
the real world RTP clinical workflow. An Nvidia Quadro M4000 GPU with 8 GB
memory was utilized for all the training steps. For the first training stage, training time
for each 2D U-Net like structure is dependent on the input size of the images at the
corresponding view, 21 h and 95 h for axial view and sagittal view, respectively. For
the second training stage, combination net, 7 h was taken. A total time of 123 h was
used for the 2-stage training procedure. The testing phase only cost less than 8 s for
each subject 3D CT volume synthesis.

3.1 Effectiveness of the Proposed Framework

In the experiment, we have 34 MR-CT pairs, where 27 pairs are used for training and
the rest 7 pairs for testing. Our proposed method showed significant improvements at
2D slice level compared to the benchmark U-Net structure Fig. 6. The multi-view
combination of the 2D U-Net structures also showed effectiveness on removing the 2D
slice stitching blurs across the 3D volume and avoided sacrificing synthetic image
quality by shrinking the size of 3D training network (Fig. 7). Comparisons between
sCTs generated using our proposed method and ground-truth CTs are discussed in the
following sections.
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3.2 Synthetic CT Quality Improvement

We can clearly see the small misalignment deficits from the multi-atlases-based sCTs
[13] used for our training by comparing input MRs in Fig. 8. However, our proposed
method will compensate these slight misalignments by predicting both the bone edge
and soft tissue actual locations, which outperformed the state-of-art multi-atlas-based
algorithm.

(a) (b) (c) (d)

Fig. 6. Improved quality of the bone area synthesis compared to benchmark U-Net schemes.
(a) Ground-truth sCT used for training; (b) Bench mark result using original U-Net; (c) Result
using benchmark U-Net with maxpooling function; (d) Proposed result.

Fig. 7. Removed 2D slice stitching blurring effects (red arrow) by combining multi-view U-Net
and improved image quality compared to results from a shrunk size 3D benchmark network.

So  ssue difference indicator
Bone difference indicator

Proposed resultsAtlas–based GroundTruth
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Fig. 8. Improved synthetic quality compared to the ground-truth CTs in 3 different views. Each
column is a comparison among the input MR, ground-truth image and proposed predictions.
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3.3 Synthetic CT Evaluation

To quantitatively measure the reliability and accuracy of the synthetic CT outputted by
our framework and the ground-truth CT images, Mean Absolute Error (MAE) (also
used in [1, 10]) was utilized:

MAE ¼ 1
N

X

x;y;z2V1;V2

V1 x; y; zð Þ � V2 x; y; zð Þj j ð3Þ

where V1;V2 represent the synthetic CT and ground-truth volumes, and N represents
total number of the voxels.

As for the 7 pure testing cases, the MAE values are very low (average 16.9 HU)
(Table 1). Compared to the state-of-art results (average 58 HU in [10] and around 40
HU in most of works [1]), our method achieves higher accuracy. Compared with 3
benchmark U-Net-based methods, the proposed scheme achieved the best performance
(Table 1), demonstrating the effectiveness of our specific design. Besides, the stunning
CT synthesis speed (less than 8 s) significantly outperformed the state-of-art multi-
atlas-based framework used to generate ground-truth synthetic CTs (more than
10 min), which paves the way for applying the proposed framework to real clinical
settings.

4 Discussion

In this work, we explored a deep learning framework for CT synthesis from MR. An
average MAE of 19.6 HU and *10 s synthesis speed outperform state-of-the-art
methods. It shows the potency of the proposed deep learning framework in cross
modality synthesis. Compared to other methods, the proposed method also showed
significant improvement in sCT quality. In order to evaluate if our method is sufficient
for MR-only RTP, it is important to evaluate the dose calculated from sCTs, which is
part of our future work. This work gives us a new insight into tackling imperfect
training pairs and 3D network training memory efficiency problem and the superior
results also gives the promise to our framework for other applications.

Table 1. MAE values comparison for 7 purely testing subjects

MAE[HU] Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 Sub 6 Sub 7 Mean

Proposed 14.8 9.0 21.9 16.1 16.4 13.2 27.1 16.9
Sagittal benchmark U-Net 51.4 32.1 45.4 43.6 42.4 49.9 53.9 45.5
Axial benchmark U-Net 26.0 16.2 28.0 23.6 25.2 25.4 29.7 24.9
Multi-view benchmark 18.3 11.7 20.0 17.0 21.8 18.0 21.1 18.3
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