
Translation of 1D Inverse Fourier Transform
of K-space to an Image Based on Deep
Learning for Accelerating Magnetic

Resonance Imaging

Taejoon Eo, Hyungseob Shin, Taeseong Kim, Yohan Jun,
and Dosik Hwang(&)

School of Electrical and Electronic Engineering,
Yonsei University, Seoul, Republic of Korea

dosik.hwang@yonsei.ac.kr

Abstract. To reconstruct magnetic resonance (MR) images from undersampled
Cartesian k-space data, we propose an algorithm based on two deep-learning
architectures: (1) a multi-layer perceptron (MLP) that estimates a target image
from 1D inverse Fourier transform (IFT) of k-space; and (2) a convolutional
neural network (CNN) that estimates the target image from the estimated image
of the MLP. The MLP learns the relationship between 1D IFT of undersampled
k-space which is transformed along the frequency-encoding direction and the
target fully-sampled image. The MLP is trained line by line rather than by a
whole image, because each frequency-encoding line of the 1D IFT of k-space is
not correlated with each other. It can dramatically decrease the number of
parameters to be learned because the number of input/output pixels decrease
from N2 to N. The next CNN learns the relationship between an estimated image
of the MLP and the target fully-sampled image to reduce remaining artifacts in
the image domain. The proposed deep-learning algorithm (i.e., the combination
of the MLP and the CNN) exhibited superior performance over a single MLP
and a single CNN. And it outperformed the comparison algorithms including
CS-MRI, DL-MRI, a CNN-based algorithm (denoted as Wang’s algorithm),
PANO, and FDLCP in both qualitative and quantitative evaluation. Conse-
quently, the proposed algorithm is applicable up to a sampling ratio of 25% in
Cartesian k-space.
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1 Introduction

Magnetic resonance imaging (MRI) is an imaging technique that can provide various
contrast mechanisms for visualizing anatomical structures and physiological functions
in human body. However, MRI is relatively slow because it is not possible to
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simultaneously sample multiple data points in the raw data domain (i.e. 2D Fourier
domain of an image, which is referred to as k-space).

To accelerate MRI acquisition, k-space can be subsampled at a frequency that is
lower than the Nyquist rate (i.e., it can be undersampled) instead of acquiring the fully-
sampled k-space (i.e., sampling the data at the Nyquist rate). However, a simple
reconstruction (i.e., 2D inverse Fourier transform) from the undersampled k-space
brings out aliasing artifacts in the image domain and obscures many anatomical and
physiological information. To reduce the aliasing artifacts and recover the missing
information in images, various reconstruction algorithms such as compressed sensing
(CS) [1] and parallel imaging (PI) [2] have been developed. The CS algorithms have
been developed to the combination with low-rank constraint terms [3] and to image-
adaptive algorithms that enforce sparsity on image patches [4].

In recent, deep-learning based reconstruction algorithms have been introduced and
regarded as alternatives of CS. The first deep-learning algorithm applied to MRI
reconstruction comprises a 3-layer convolutional neural network (CNN) that learns the
relationship between undersampled images and fully-sampled images, and the con-
ventional CS is followed at the end (hereafter denoted as Wang’s algorithm) [5]. After
the study, various deep-learning algorithms such as CNN-based sparse residual (arti-
facts) learning algorithm [6], a cascaded CNN with interleaved data fidelity [7], multi-
layer perceptron (MLP)-based parallel imaging (PI) algorithms have been introduced
[8]. Especially, the automated transform by manifold approximation (AUTOMAP)
algorithm provided a new perspective for reconstruction algorithm by directly trans-
lating k-space to the target image with neural networks [9].

In this study for accelerating MRI, we propose an algorithm that can efficiently
translate 1D inverse Fourier transform (IFT) of undersampled k-space in data-
acquisition direction (i.e., frequency-encoding direction) to the target fully-sampled
images using two different deep-learning architectures: (1) a multi-layer perceptron
(MLP) that estimates a target image from 1D inverse Fourier transform of k-space; and
(2) a convolutional neural network (CNN) that reduces remaining artifacts in the output
of the MLP. The proposed algorithm can utilize the maximum possible extent of the
raw k-space while reducing the number of optimizing parameters dramatically com-
pared with existing deep-learning algorithms, which enables efficient learning and
results in better reconstructions than comparison algorithms.

2 Methods

2.1 Problem Formulation

Let y 2 {nkx�nky , where nkx and nky represent the number of horizontal and vertical
pixels of k-space respectively, denote a 2D complex-valued MR k-space. Our purpose
is to reconstruct a fully-sampled image x 2 {nx�ny , where nx and ny represent the
number of horizontal and vertical pixels of x, from the undersampled k-space, yu,
obtained by multiplication of a binary undersampling mask U and y as follows:
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yu ¼ U � y ¼ U � F 2DðxÞ ¼ yu;r þ iyu;i ð1Þ

xu ¼ F�1
2D yuð Þ ¼ xu;r þ ixu;i ð2Þ

where yu 2 {nkx�nky denotes the undersampled k-space; U 2 R
nkx�nky denotes the binary

undersampling mask; � denotes element-wise multiplication; F 2D and F�1
2D denote the

2D Fourier transform (FT) and IFT, respectively; yu;r 2 R
nkx�nky and yu;i 2 R

nkx�nky

denote the real and imaginary channels of yu, respectively; xu denotes the undersam-
pled image; and xu;r and xu;i denote the real and imaginary channels of xu, respectively.

To estimate x from a small number of samples in the k-space, yu, we introduce an
algorithm comprising two deep-learning architectures, one is MLP that translates 1D
IFT of undersampled k-space to an image, and the other is CNN that removes
remaining artifacts in image domain. The objective function to optimize the parameters
of the MLP, HMLP, is

argminHMLP
x� HMLP zu;HMLPð Þk k22 ð3Þ

where zu ¼ F�1
1DðyuÞ 2 {nx�nky denotes the 1D IFT of yu along the frequency-encoding

(horizontal) direction; and HMLP denotes the hypothesis function that estimates fully-
sampled image x from 1D IFT of undersampled k-space, zu, by the MLP. The other
objective function to optimize the parameters of the CNN for artifacts removal, HCNN,
is

argminHCNN
x� HCNN x̂MLP;HCNNð Þk k22 þ k yu � U � F 2D HCNN x̂MLP;HCNNð Þð Þk k22

ð4Þ

where HCNN denotes the hypothesis function for reducing the remaining artifacts in the
image reconstructed by the MLP, x̂MLP ¼ HMLP zu;HMLPð Þ; and k is the regularization
parameter for data fidelity. The combined equation of Eqs. (3) and (4) to optimizeHMLP

and HCNN, which is the final objective function of this study, can be represented as

argminHMLP;HCNN

x� HCNN HMLP F�1
1DðyuÞ;HMLP

� �
;HCNN

� ��� ��2
2

þ k y� U � F 2D HCNN HMLP F�1
1DðkuÞ;HMLP

� �
;HCNN

� �� ��� ��2
2

ð5Þ

In Fig. 1, the proposed deep-learning frameworks to solve Eq. (5) are presented.

2.2 The Proposed MLP: Translation from 1D IFT of K-space
to an Image

The proposed MLP learns the relationship between 1D IFT of the undersampled
Cartesian k-space which is transformed along the frequency-encoding (horizontal)
direction, zu, and the target fully-sampled image x. The proposed MLP is trained line
by line rather than by a whole image, because each phase-encoding (vertical) line of the
1D IFT of k-space is not correlated with each other. Then, the estimation of a vertical
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line of the fully-sampled image x from the corresponding line of the 1D IFT of
undersampled k-space, zu, using the MLP can be represented as

bXMLPðxÞ ¼ wNFL . . .r w2r w1ZuðxÞþ b1ð Þþ b2ð Þ. . .ð Þþ bNFL ð6Þ

where

bXMLPðxÞ ¼ x̂MLPðx; 1Þ; x̂MLPðx; 2Þ; � � � ; x̂MLPðx; yÞ½ �T2 {1�ny ð7Þ

ZuðxÞ ¼ zuðx; 1Þ; zuðx; 2Þ; � � � ; zu x; nky
� �� �T2 {1�nky ð8Þ

where x and y denote horizontal and vertical indices in the image domain, respectively;
wn and bn are weight and bias matrices of the MLP, respectively, where n = 1, 2, 3, …,
NFL; r is the activation function; and NFL denotes the number of fully-connected
layers of the MLP. As depicted in Eq. (9), The loss function for training the MLP is
defined as the mean-squared error between ZðxÞ and the estimation of ZðxÞ (i.e.,
HMLP ZuðxÞ; hMLPð Þ ¼ bXMLPðxÞ).

LMLP hMLPð Þ ¼ 1
2M

XM

m¼1
x xmð Þ � HMLP Zu xmð Þ; hMLPð Þk k22 ð9Þ

where

hMLP ¼ w1; b1ð Þ; w2; b2ð Þ; . . .; wNFL; bNFLð Þf g ð10Þ

where x xmð Þ and Zu xmð Þ denote the m-th vertical line of the fully-sampled image and
the m-th vertical line of 1D IFT of the undersampled k-space, respectively; and M
denotes the batch size. This line-by-line training can dramatically decrease the number

Fig. 1. The proposed reconstruction algorithm based on the MLP for translating 1D IFT of k-
space to an image and the CNN for artifacts removal in the output of the MLP
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of parameters to be learned because the number of input/output pixels (i.e., ZuðxÞ andbXMLPðxÞ) decrease from nxnky to nky. Finally, the hypothesis function and the
parameters (i.e., weight and bias matrices) of the MLP that estimates the 2D fully-
sampled image x from zu can be represented as

HMLP zu;HMLPð Þ ¼ x̂MLP ¼ WNFL . . .rðW2r W1zu þB1ð ÞþB2ð Þ. . .ÞþBNFL ð11Þ

where

HMLP ¼ W1;B1ð Þ; W2;B2ð Þ; . . .; WNFL;BNFLð Þf g ð12Þ

where Wn ¼ 1wn, Bn ¼ 1wn, 1 ¼ 1; 1; � � � ; 1½ �T2 R
1�nky , and n = 1, 2, 3, …, NFL.

More details for the MLP, including optimizer parameters, network specifications,
including network depths, the number of outputs, activation function, deep-learning
libraries, and training/testing times, are provided in the supporting information.

2.3 The Proposed CNN with Data Fidelity: Artifacts Removal
in the MLP Output

The proposed CNN aims to remove the artifacts remaining in the output images of the
previous MLP. The hypothesis function of HCNN that estimates the fully-sampled
image x from the output of the MLP, x̂MLP, using CNN can be represented as

HCNN x̂MLP;HCNNð Þ ¼ xNCL � . . .rðx2 � r x1 � x̂MLP þ b1ð Þþ b2ð Þ. . .Þþ bNCL ð13Þ

where

HCNN ¼ x1; b1ð Þ; x2; b2ð Þ; . . .; xNCL; bNCLð Þf g ð14Þ

where xn and bn are convolution and bias matrices in each convolution layer, respec-
tively, where n ¼ 1; 2; 3; . . .;NCL; � denotes the convolution operator; and NCL
denotes the number of convolution layers. The loss function used for training the CNN is

LCNN HCNNð Þ ¼ 1
2M

XM

m¼1
xm � HCNN x̂MLP;m;HCNN

� ��� ��2
2 ð15Þ

where xm and x̂MLP;m denote the m-th fully-sampled image and the m-th estimated
image of the MLP in the training dataset, respectively; and M denotes the batch size.

The final data fidelity is performed in k-space as a closed form solution [4] as

ŷf kx; ky
� � ¼ ŷMLPþCNN kx;kyð Þþ kyu kx;kyð Þ

1þk if U kx; ky
� � ¼ 1

ŷMLPþCNN kx; ky
� �

if U kx; ky
� � ¼ 0

(
ð16Þ
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where

ŷMLPþCNN ¼ F 2D x̂MLPþCNNð Þ ¼ F 2D HCNN x̂MLP;HCNNð Þð Þ ð17Þ

where kx and ky are horizontal and vertical indices of k-space, respectively. Then, the
final solution of the proposed algorithm is obtained by IFT of ŷf as x̂f ¼ F�1

2D ŷfð Þ.
More details for the CNN, including optimizer parameters, network specifications,

including network depths, filter sizes, activation function, deep-learning libraries, and
training/testing times, are provided in the supporting information.

2.4 Experimental Frameworks

All experiments conducted in the present study were approved by the institutional
review board. Written informed consent was obtained from all human subjects.
Two MR datasets were used: T2-fluid attenuated inversion recovery (T2-FLAIR) brain
real-valued dataset provided by the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) [10], and T2-weighted complex-valued dataset acquired at our local institute.
Details of data acquisition, including scanner information, sequence parameters, and
the number of slices used for training and testing, are provided in the supporting
information.

Undersampled k-space data were retrospectively obtained by subsampling the
fully-sampled k-space data. Before undersampling, all MR images were normalized to
a maximum magnitude of 1. A Cartesian undersampling scheme in a phase encoding
direction (1D random) was used for generating undersampled k-space dataset. The
sampling ratio for the undersampling was 25%. The binary undersampling masks is
presented in the supporting information (Supporting Figure S1).

The proposed algorithm was compared with the following six algorithms: baseline
zero-filling, CS-MRI [1], DL-MRI [4], a CNN-based algorithm by Wang et al. [5]
(denoted as Wang’s algorithm), PANO [11], and FDLCP [12]. The parameters of the
comparison algorithms are provided in the supporting information. Peak signal-to-noise
ratio (PSNR) and structure similarity (SSIM) [13] were used for quantitative metrics.
The patch size used to calculate SSIM was 11.

3 Results

3.1 The Conventional Image-to-Image MLP vs. the Proposed MLP

In Fig. 2, we evaluated the two different MLPs: The conventional MLP introduced in
[8] which translates each vertical line of the 2D IFT of the undersampled k-space (i.e.,
the undersampled image) to the corresponding line of the target image and the pro-
posed MLP which translates each vertical line of 1D IFT of the undersampled k-space
to the corresponding line of the target image. Variables such as the number of outputs
and the network depths in MLPs were exactly same. In Fig. 2, the proposed MLP
(h) showed better reconstructions than the conventional image-to-image MLP (g) in
terms of restoring details and reducing aliasing artifacts.
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Fig. 2. (a) the fully-sampled image in T2-FLAIR (ADNI) dataset, (b) the zero-filling image at
the sampling ratio = 25%, the reconstructed images by (c) the image-to-image MLP and (d) the
proposed MLP. (e–h) are the magnified images of boxed region of interests (ROIs) in (a–d).

Fig. 3. (a) the fully-sampled image from the T2-weighted (our local institute) dataset, (b) zero-
filling image with the sampling ratio = 25%, and the images reconstructed with (c) CS-MRI,
(d) DL-MRI, (e) Wang’s algorithm, (f) PANO, (g) FDLCP, and (h) the proposed algorithm. (i–p)
are the magnified images of the boxed ROIs in (a–h).
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3.2 Comparison Study with Conventional Algorithms

Qualitative and quantitative comparisons are provided for the six conventional algo-
rithms and the proposed algorithm. Figure 3 depicts the resultant images from the
complex-valued T2-weighted dataset (from our local institute). The results of the real-
valued T2-FLAIR dataset are provided in the supporting information (Supporting
Figure S3). Table 1 depicts quantitative results for the two data sets. The proposed
algorithm outperformed the six comparison algorithms in both qualitative and quan-
titative tests.

4 Conclusion

The current study presents a domain-transform algorithm comprising two deep-learning
architectures (MLP and CNN) for reconstructing MR images from undersampled
Cartesian k-space. Experimental results on the two different datasets demonstrated that
the proposed algorithm outperforms the comparison state-of-the-art reconstruction
algorithms. More discussion is provided in the supporting information.
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