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Abstract. Due to inevitable differences between the data used for train-
ing modern CAD systems and the data encountered when they are
deployed in clinical scenarios, the ability to automatically assess the qual-
ity of predictions when no expert annotation is available can be critical.
In this paper, we propose a new method for quality assessment of retinal
vessel tree segmentations in the absence of a reference ground-truth. For
this, we artificially degrade expert-annotated vessel map segmentations
and then train a CNN to predict the similarity between the degraded
images and their corresponding ground-truths. This similarity can be
interpreted as a proxy to the quality of a segmentation. The proposed
model can produce a visually meaningful quality score, effectively pre-
dicting the quality of a vessel tree segmentation in the absence of a man-
ually segmented reference. We further demonstrate the usefulness of our
approach by applying it to automatically find a threshold for soft proba-
bilistic segmentations on a per-image basis. For an independent state-
of-the-art unsupervised vessel segmentation technique, the thresholds
selected by our approach lead to statistically significant improvements in
F1-score (+2.67%) and Matthews Correlation Coefficient (+3.11%) over
the thresholds derived from ROC analysis on the training set. The score
is also shown to correlate strongly with F1 and MCC when a reference
is available.

1 Introduction

The ability to automatically assess the quality of the outcomes produced by
CAD systems when they are meant to work in real clinical scenarios is criti-
cal. Unfortunately, internal validation data can be contaminated when used for
incremental method development, leading to over-optimistic performance expec-
tations. In addition, differences between the data used for training a model and
the data that such model encounters in practice may lead to relevant failures.
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On the other hand, the availability of automatic quality control tools is key for
the effective deployment and monitoring of computational tools on large-scale
medical image analysis studies or clinical routines. Unfortunately, this aspect of
the CAD system design pipeline is seldom addressed in the literature [12].

In the retinal image analysis field, computational models developed for auto-
matic image understanding are ubiquitous. In this context, a task of particular
interest is the analysis of the retinal vessel tree. This involves the study of vascu-
lar biomarkers that are of great interest as early indicators of potential diseases,
like vessel calibers, tortuosity, and fractal dimension. However, in order to reli-
ably extract such biomarkers, the first step is to extract an accurate binary
segmentation of the vessels. For this reason, a large body of research has been
dedicated to solve this problem [1,15]. In comparison, few research has been
addressed to the related task of determining the quality of the extracted seg-
mentations.

Fig. 1. Representation of the training stage of the proposed method. Similarity between
original/degraded vessel maps is measured by Normalized Mutual Information (NMI).

When the task of retinal vessel segmentation is considered as a binary clas-
sification problem, standard metrics like accuracy can be applied to measure
performance. Nevertheless, due to the sparsity of the vasculature within the
retina, vessel segmentation is a highly imbalanced classification problem, and
more appropriate performance estimates like sensitivity, specificity, F1 score, or
Matthews Correlation Coefficient, are necessary. More advanced techniques have
been also proposed, e.g. [3] or [14]. In both cases, the overall strategy is to allow
for some error margin, in order to compensate also for inter-observer differences
in the ground-truth generation stage. This is achieved by analyzing the degree of
overlap between a manual reference and a segmentation in an adaptive manner,
and also penalizing dissimilarities and disconnections on the vessel skeletons.

All the above approaches belong to the category of full-reference quality met-
rics, for which a ground-truth image is required. In this paper, a no-reference
quality score for the automatic assessment of retinal vessel segmentations is
introduced for the first time. The proposed method operates in the absence of
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a reference image. This is achieved by designing a CNN that predicts the simi-
larity between a manual segmentation and a corresponding artificially degraded
transformation, as summarized in Fig. 1. This similarity can be considered as
an estimate of the degraded segmentations’ quality. The provided experimental
results demonstrate that, once trained, the proposed model produces a qual-
ity score that correlates well with full-reference quality metrics, and is useful
to detect deficient segmentations generated by automatic vessel segmentation
techniques.

2 Methodology

In this section we provide a detailed step-by-step technical explanation of the
approach proposed to build and train a no-reference retinal vessel quality metric.

2.1 Generating Realistic Degraded Vessel Trees

The first step in our approach is to model an incorrectly segmented vessel tree.
The most typical artifacts in this case involve under-segmentations, which often
lead to vasculature disconnections and thin vessels vanishing. Another common
error source in this case is the presence of the optic disk and retinal lesions,
which can be confused with vessels by automatic techniques, leading to over-
segmentations.

While the latter class of errors is harder to model due to the wide variability
of retinal lesions, under-segmentations can be simulated by local morphological
erosions, as shown in Fig. 2. We also include morphological dilations, as well as
completely white and dark images degraded with impulse noise on the field-of-
view, so as to embed in the model information related to over-segmentations.

The examples generated in this stage are produced from a set of manual
expert-delineated binary vessel trees, and they are meant to be supplied later
to our model in training time. Hence, they need to be generated in an efficient
manner. It is also important to train the model with perfect segmentations so
that it can correctly attribute a high score in cases where an algorithm success-
fully separates the vasculature. For this purpose, given a manual vessel tree v,
we produce a synthetically degraded version deg(v) of it as follows:

deg(v) =

⎧
⎪⎨

⎪⎩

v, for 0 ≤ p < 1
5

N , for 1
5 ≤ p < 2

5

M(v), for 2
5 ≤ p ≤ 1,

(1)

where p is drawn from a uniform probability distribution U(0, 1), N represents
impulse noise, and M is a stochastic morphological operator that performs a
random number of local degradations by first selecting a number n of square
image patches v̄ of fixed size, extracted from random location on the original
vessel image v. Each of these patches undergoes the following transformations:

M(v̄) =

{
Es(v̄), for 0 ≤ p < 1

2

Ds(v̄), for 1
2 < p ≤ 1

(2)
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where Es and Ds are the morphological erosion and dilation operators respec-
tively, specified by a square structuring element s of a size randomly selected
to be 3, 5, or 7 at each step. The structuring element is itself randomly built
according to a Bernoulli distribution with p = 0.5 at each pixel position. Once
v̄ has been artificially degraded, it is stored back at its original location in v.

Fig. 2. (a) Manual vessel segmentation. (b) Examples of image patches extracted from
(a) with corresponding degraded counterparts. (c) Artificially degraded version of (a).
The normalized mutual information between (a) and (c) is NMI [0,1] = 0.89. At the
patch level, images in the top row of (b) have NMI [0,1] = 0.39, middle row NMI [0,1] =
0.23, and bottom row NMI [0,1] = 0.45.

2.2 Mutual Information as a Similarity Metric Between Binary
Vessel Maps

The next step is to establish a similarity measure between a degraded vessel
tree and a manually segmented one. Moreover, since the goal is to build an
image quality score, this measure should preferably be bounded a-priori in a
finite interval. Among the many possibilities, we select the Normalized Mutual
Information in order to analyze the amount of shared information in both images.

Given a manually-segmented vessel tree v and its degraded counterpart
deg(v), Mutual Information considers both the marginal entropies H(v) and
H(deg(v)) and the entropy of their joint probability distribution H(v,deg(v)):

MI(v,deg(v)) = H(v) + H(deg(v)) − H(v,deg(v)). (3)

This quantity has been widely used for medical image registration tasks [7]. A
derived formulation is the normalized mutual information:

NMI(v,deg(v)) =
H(v) + H(deg(v))

H(v,deg(v))
, (4)
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which is more robust to overlaps in both images, and it is bounded as 1 ≤
NMI ≤ 2, [6]. Finally, in order to obtain a similarity score producing a maxi-
mum value of 1 when both images are perfectly aligned, we reparametrize Eq. (4)
as follows:

NMI [0,1](v,deg(v)) = 2 · [1 − 1
NMI(v,deg(v))

]. (5)

The Normalized Mutual Information formula given by Eq. (5) is suitable for
the problem of estimating the similarity of a manual vessel segmentation and a
degraded version of it, as shown in Fig. 2.

2.3 A Deep Architecture for Vessel Map Similarity Regression

In order to learn a quality score for binary vessel tree images, we proceed as
follows: given a dataset of manually segmented vessel maps, we apply the oper-
ator defined in Eq. (1) to build degraded versions, which serve as input for the
model. The similarity of the input with its manually-segmented counterpart is
computed by means of Eq. (5), which is considered as a proxy to the quality
of the degraded vessel tree. For regressing this quantity, we design a CNN as
specified below.

The proposed architecture consists of a subsequent application of down-
sampling and convolution layers, specified in Fig. 3. Downsampling was imple-
mented as a convolution with stride of 2. Non-linear activation functions were
applied after each layer, specifically Leaky ReLU units with a slope parame-
ter of α = 0.02. A Global Average Pooling (GAP) was applied to obtain a
uni-dimensional representation of the input vessel tree of size 512. This repre-
sentation was supplied to two fully-connected layers, and the output was passed
through a sigmoid, resulting in a score in [0, 1]. This score was compared to the
previously computed similarity through an L1 loss. The weights of the model
were then updated by error backpropagation. The loss was minimized via stan-
dard mini-batch gradient descent with the Adam optimizer [5] and a learning
rate of 2e−4.

Fig. 3. An architecture for regressing similarity between a degraded vessel tree and a
manual segmentation. CN stands for a convolutional layer with N filters of size 3 × 3.
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3 Experimental Results

We provide now a qualitative and quantitative analysis of the performance of the
developed No-Reference Quality Metric (NRQM) for retinal vessel segmentation.

Fig. 4. The four worse and best automatic segmentations extracted from the Messidor
dataset with the technique of [9], sorted according to the proposed quality score.

3.1 Qualitative Evaluation

In a first stage, the proposed NRQM is evaluated for the task of detecting when
a deficient segmentation is produced by an automatic retinal vessel extraction
scheme. The Messidor-1 dataset [2], which contains 1200 images for which no
manually-delineated vessel maps are available, is employed. In order to auto-
matically produce segmentations, we apply a U-Net architecture [9]. To train
it, we use the DRIVE dataset [11], which has 40 retinal images with vessel
ground-truth. The model is trained on 20 images, achieving an area under the
Receiver-Operator Curve (ROC) of 97, 5% on the remaining images, in line with
current methods.

The U-Net model produces grayscale images, referred to as soft segmenta-
tions. Each pixel contains its vessel likelihood. In order to generate a binary
segmentation that can be used afterwards, e.g. to measure biomarkers related
to the retinal vasculature, a binarizing threshold needs to be selected. The only
feasible approach when such a system is to be deployed in a clinical scenario is
to derive this threshold from the ROC curve as the one that optimizes a certain
performance metric. The threshold maximizing the Youden index was selected,
for which an accuracy of 95.67% was achieved on the DRIVE test set.
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After selecting an optimal threshold, 1200 soft segmentations are generated
from the Messidor dataset, and binarized with it. A score is computed for every
segmentation, and the segmentations are sorted in descending order relative to
it. Figure 4 displays the three best and worst segmentations according to the pro-
posed NRQM. It is important to stress that the identification of these deficient
segmentations was performed on a dataset without any reference ground-truth.

3.2 Quantitative Experimental Evaluation

For a quantitative evaluation of our NRQM, we selected the popular COSFIRE
unsupervised vessel segmentation technique [1]. To remove any bias in our com-
parisons, we consider an independent test set, DRiDB [8], composed of 50 retinal
images. Our evaluation of the proposed NRQM is twofold. In both cases, vessel
segmentation performance will be assessed in terms of F1-score and Matthews
Correlation Coefficient (MCC), which are often used within the vessel segmenta-
tion literature [1,15] to gain evaluation insight due to the skewed-classes setting.

We compared two binarization strategies. First, ROC analysis was performed
on DRIVE soft segmentations produced by COSFIRE to obtain optimal thresh-
olds maximizing F1 score and MCC respectively. These thresholds were used
to produce binary segmentations for every DRiDB image. Second, we thresh-
olded DRiDB images at all possible values, and for each image we selected the
threshold that led to a binary segmentation maximizing our NRQM. Finally, we
performed statistical analysis to compare F1-scores and MCC obtained with the
two approaches. Data normality was assessed using the D’Agostino-Pearson test
[4]. In all cases, data were not normally distributed. Thus, we performed a non-
parametric test to assess whether their population mean ranks differed using the
Wilcoxon signed-rank test [13]. F1-scores and MCC of segmentations obtained
using our NRQM were statistically significantly higher than those from the other
compared approach, with a median difference of 0.03 for both performance met-
rics.

In a second stage, we investigated whether our NRQM was statistically cor-
related with the F1-score and MCC metrics. We calculated the F1-score and
MCC for 256 uniformly distributed values of the NRQM. Again, we found that
data were not normally distributed, thus we performed a nonparametric test to
measure the rank correlation between the different metrics using the Spearman’s
r test [10]. The proposed NRQM was very strongly positively correlated with
F1-score (r = 0.92) and strongly positively correlated with MCC (r = 0.68).

4 Conclusions and Future Work

A no-reference metric for assessing the quality of retinal vessel maps has been
introduced. Experimental results demonstrate that this score can capture the
nature of deficient segmentations generated by retinal vessel segmentation algo-
rithms, correlating well with full-reference metrics when ground-truth is avail-
able.
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The approach presented here follows a general idea of modeling the degrada-
tion instead of a segmentation goal. If faithful synthetically degraded segmen-
tations can be produced, and a meaningful similarity metric can be defined,
a similar model can theoretically be trained to predict the similarity between
these degraded examples and the source images. This is independent of the prob-
lem at hand, and could be explored on applications beyond retinal vessel tree
segmentations.
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