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Abstract. Computed tomography (CT) is increasingly being used for
cancer screening, such as early detection of lung cancer. However, CT
studies have varying pixel spacing due to differences in acquisition param-
eters. Thick slice CTs have lower resolution, hindering tasks such as
nodule characterization during computer-aided detection due to partial
volume effect. In this study, we propose a novel 3D enhancement con-
volutional neural network (3DECNN) to improve the spatial resolution
of CT studies that were acquired using lower resolution/slice thicknesses
to higher resolutions. Using a subset of the LIDC dataset consisting of
20,672 CT slices from 100 scans, we simulated lower resolution/thick
section scans then attempted to reconstruct the original images using
our 3DECNN network. A significant improvement in PSNR (29.3087dB
vs. 28.8769dB, p-value < 2.2e − 16) and SSIM (0.8529dB vs. 0.8449dB,
p-value < 2.2e− 16) compared to other state-of-art deep learning meth-
ods is observed.
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1 Introduction

Computed tomography (CT) is a widely used screening and diagnostic tool that
provides detailed anatomical information on patients. Its ability to resolve small
objects, such as nodules that are 1–30 mm in size, makes the modality indis-
pensable in performing tasks such as lung cancer screening and colonography.
However, the variation in image resolution of CT screening due to differences
in radiation dose and slice thickness hinders the radiologist’s ability to discern
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subtle suspicious findings. Thus, it is highly desirable to develop an approach
that enhances lower resolution CT scans by increasing the detail and sharpness
of borders to mimic higher resolution acquisitions [1].

Super-resolution (SR) is a class of techniques that increase the resolution
of an imaging system [2] and has been widely applied on natural images and
is increasingly being explored in medical imaging. Traditional SR methods use
linear or non-linear functions (e.g., bilinear/bicubic interpolation and example-
based methods [3,4]) to estimate and simulate image distributions. These meth-
ods, however, produce blurring and jagged edges in images, which introduce
artifacts and may negatively impact the ability of computer-aided detection
(CAD) systems to detect subtle nodules. Recently, deep learning, especially con-
volutional neural networks (CNN), has been shown to extract high-dimensional
and non-linear information from images that results in a much improved super-
resolution output. One example is the super-resolution convolutional neural
network (SRCNN) [5]. SRCNN learns an end-to-end mapping from low- to
high-resolution images. In [6,7], the authors applied and evaluated the SRCNN
method to improve the image quality of magnified images in chest radiographs
and CT images. Moreover, [9] introduced an efficient sub-pixel convolution net-
work (ESPCN), which was shown to be more computationally efficient than
SRCNN. In [10], the authors proposed a SR method that utilizes a generative
adversarial network (GAN), resulting in images have better perceptual qual-
ity compared to SRCNN. All these methods were evaluated using 2D images.
However, for medical imaging modalities that are volumetric, such as CT, a
2D convolution ignores the correlation between slices. We propose a 3DECNN
architecture, which executes a series of 3D convolutions on the volumetric data.
We measure performance using two image quality metrics: peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM). Our approach achieves signifi-
cant improvement compared with improved SRCNN approach (FSRCNN) [8,9]
on both metrics.

2 Method

2.1 Overview

For each slice in the CT volume, our task is to generate a high-resolution image
IHR from a low-resolution image ILR. Our approach can be divided into two
phases: model training and inference. In the model training phase, we first down-
sample a given image I to obtain the low-resolution image ILR. We then use the
original data as the high-resolution images IHR to train our proposed 3DECNN
network. In the model inference phase, we use a previously unseen low-resolution
CT volume as input to the trained 3DECNN model and generate a super reso-
lution image ISR.
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Fig. 1. Proposed 3DECNN architecture

2.2 Formulation

For CT images, spatial correlations exist across three dimensions. As such, the
key to generating high-quality SR images is to make full use of available infor-
mation along all dimensions. Thus, we apply cube-shaped filters on the input
CT slices and slides these filters through all three dimensions of the input. Our
model architecture is illustrated in Fig. 1. This filtering procedure is repeated
in 3 stacked layers. After the 3D filtering process, a 3D deconvolution is used
to reconstruct images and up-sample them to larger ones. The output of this
3D deconvolution is a reconstructed SR 3D volume. However, to compare with
other SR methods such as SRCNN and ESPCN, which produces 2D outputs, we
transform our 3D volume into a 2D output. As such, we add a final convolution
layer to smooth pixels into a 2D slice, which is then compared to the outputs
of the other methods. In the following paragraphs, we describe mathematical
details of our 3DECNN architecture.

3D Convolutional Layers. In this work, we incorporate the feature extrac-
tion optimizations into the training/learning procedure of convolution kernels.
The original CT images are normalized to values between [0,1]. The first CNN
layer takes a normalized CT image (represented as a 3-D tensor) as input
and generates multiple 3-D tensors (feature maps) as output by sliding the
cube-shaped filters (convolution kernels), which are sized of ‘k1 × k2 × k3’,
across inputs. We define convolution input tensor notations as 〈N,Cin,H,W 〉
and output 〈N,Cout,H,W 〉, in which Ci stands for the number of 3-D ten-
sors and 〈N,H,W 〉 stands for the feature map block’s thickness, height, and
width, respectively. Subsequent convolution layers take the previous layer’s out-
put feature maps as input, which are in a 4-D tensor. Convolution kernels
are in a dimension of 〈Cin, Cout, k1, k2, k3〉. The sliding stride parameter 〈s〉
defines how many pixels to skip between each adjacent convolution on input fea-
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ture maps. Its mathematical expression is written as follows: out[co][n][h][w] =
∑Ci

n=0

∑k1
i=0

∑k2
j=0

∑k3
k=0 W [co][ci][i][j][k] ∗ In[ci][s ∗ n + i][s ∗ h + j][s ∗ w + k].

Deconvolution Layer. In traditional image processing, a reverse feature
extraction procedure is typically used to reconstruct images. Specifically, design
functions such as linear interpolation, are used to up-scale images and also aver-
age overlapped output patches to generate the final SR image. In this work,
we utilize deconvolution to achieve image up-sampling and reconstruct fea-
ture information from previous layers’ outputs at the same time. Deconvolu-
tion can be thought of as a transposed convolution. Deconvolution operations
up-sample input feature maps by multiplying each pixel with cubic filters and
summing up overlap outputs of adjacent filters’ output [11]. Following the above
convolution’s mathematic notations, deconvolution is written as the following:
out[co][n][h[w] =

∑Ci

n=0

∑k1
i=0

∑k2
j=0

∑k3
k=0 W [co][ci][i][j][k]∗In[ci][ns +k1− i][hs +

k2 − j][ws + k3 − k]. Activation functions are used to apply an element-wise non-
linear transformation on the convolution or deconvolution output tensors. In this
work, we use ReLU as the activation function.

Hyperparameters. There are four hyperparameters that have an influence
on model performance: number of feature layers, feature map depth, number of
convolution kernels, and size of kernels. The number of feature extraction layers
〈l〉 determines the upper-bound complexity in features that the CNN can learn
from images. The feature map depth 〈n〉 is the number of CT slices that are
taken in together to generate one SR image. The number of convolution kernels
〈f〉 decides the number of total feature maps in a layer and thus decides the
maximum information that can be represented in the output of this layer. The
size of convolution and deconvolution kernels 〈k〉 decides the visible scope that
the filter can see in the input CT image or feature maps. Given the impact of
each hyperparameter, we performed a grid search of the hyperparameter space
to find the best combination of 〈n, l, f, k〉 for our 3DECNN model.

Loss Function. Peak signal-to-noise ratio (PSNR) is the most commonly used
metric to measure the quality of reconstructed lossy images in all kinds of imag-
ing systems. A higher PSNR generally indicates a higher quality of the recon-
struction image. PSNR is defined as the log on the division of the max pixel value
over mean squared root. Therefore, we directly use the squared mean error func-
tion as our loss function: J(w, b) = 1

m

∑m
i=1 L(ŷ(i), y(i)) = 1

m

∑m
i=1 ||ŷ(i) −y(i)||2,

where w and b represent weight parameters and bias parameters. m is the num-
ber of training samples. ŷ and y refer to the output of the neural network and
the target, respectively. In addition, the target loss function is minimized using
stochastic gradient descent with the back-propagation algorithm [13].
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3 Experiments and Results

In this section, we first introduce the experiment setup, including dataset and
data preparation. Then we show the design space of the hyper-parameters, at
which time we show how to explore different CNN architectures and find the best
model. Subsequently, we compare our method with recent state-of-the-art work
and demonstrate the performance improvement. Lastly, we present examples of
the generated SR CT images using our proposed method and previous state-of-
the-art results.

Fig. 2. Design space of hyper-parameters

3.1 Experiment Setup

Dataset. We use the public available Lung Image Database Consortium
image collection (LIDC) dataset for this study [12], which consists of low- and
diagnostic-dose thoracic CT scans. These scans have a wide range of slice thick-
ness ranging from 0.6 to 5 mm. And the pixel spacing in axial view (x-y direction)
ranges from 0.4609 to 0.9766 mm. We randomly select 100 scans out of a total
of 1018 cases from the LIDC dataset, result in a total consisting of 20672 slices.
The selected CT scans are then randomized into four folds with similar size. Two
folds are used for training, and the remaining two folds are used for validation
and test, respectively.
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Data Preprocessing. For each CT scan, we first downsample it on axial view
by the desired scaling factor (set 3 in our experiment) to form the LR images.
Then the corresponding HR images are ground truth images.

Hyperparameter Tuning 〈n, l, f , k〉. We choose the four most influential
parameters to explore in our experiment and discuss, which is feature depth (n),
number of layers (l), number of filters (f) and filter kernel size (k).

The effect of the feature depth 〈n〉 is shown in Fig. 2(a). It presents the
training curves of three different 3DECNN architectures, in which their 〈l, f, s〉
are the same and 〈n〉 varies in [3, 5, 9]. Among the three configurations, n = 3
has a better average PSNR than the others. The effect of the number of layers
〈l〉 is shown Fig. 2(b), which demonstrates that a deeper CNN may not always
be better. With fixed 〈n, f, s〉 and varying l ∈ [1, 3, 5, 8], here l indicate the
number of convolutional layers before the deconvolution process. We can observe
apparent different performance on the training curves. We determine that l = 3
achieves higher average PSNR. The effect of the number of filters 〈f〉 is shown
in Fig. 2(c), in which we fix 〈n, l, k〉 and choose 〈f〉 in four collections. An
apparent drop in PSNR is seen when 〈f〉 chooses the too small configuration
〈16, 16, 16, 32, 1〉. 〈64, 64, 64, 32, 1〉 and 〈64, 64, 32, 32, 1〉 has approximately
the same PSNR (28.66 vs. 28.67) so we choose latter one to save training time.
The effect of the filter kernel size 〈k〉 is shown in Fig. 2(d), in which we fix
〈n, l, f〉 and vary k in the collection of [3, 5, 9]. Experiment result proves that k =
3 achieves the best PSNR. The PSNR decrease with filter kernel size demonstrate
that relatively remote pixels contribute less to feature extraction and bring much
signal noise to the final result.

Final Model. For the final design, we set 〈 n, l, (f1, k1), (f2, k2), (f3, k3),
(fdeconv

4 , kdeconv
4 ), (f5, k5) 〉 = 〈5, 3, (64, 3), (64, 3), (32, 3), (32, 3), (1, 3)〉. We set

the learning rate α as 10−3 for this design and achieve a good convergence.
We implemented our 3DECNN model using Pytorch and trained/validated our
model on a workstation with a NVIDIA Tesla K40 GPU. The training process
took roughly 10 h.

Table 1. PSNR and SSIM results comparison.

BICUBIC FSRCNN-s [8] FSRCNN [8] ESPCN [9] proposed

PSNR (bB) Mean 27.2903 28.4731 28.7681 28.8769 29.3087

Standard

deviation (SD)

2.7754 2.8659 2.9197 2.9405 3.0253

SSIM Mean 0.8190 0.8393 0.8431 0.8449 0.8529

Standard

deviation (SD)

0.1135 0.1061 0.1080 0.1071 0.1050
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3.2 Results Comparison with T-Test Validation

We compare the proposed model to bicubic interpolation and two existing the-
state-of-the-art deep learning methods for super resolution image enhancement:
(1) FSRCNN [8] and (2) ESPCN [9]. We reimplemented both methods, retraining
and testing them in the manner as our proposed method. Both the FSRCNN-s
and the FSRCNN architectures used in [8] are compared here. A paired t-test
is adopted to determine whether a statistically significant difference exists in
mean measurements of PSNR and SSIM when comparing 3DECNN to bicubic,
FSRCNN, and ESPCN. Table 1 shows the mean and standard deviation for
the four methods in PSNR and SSIM using 5,168 test slices. The paired t-test
results show that the proposed method has significantly higher mean PSNR,
and mean differences are 2.0183 dB (p-value < 2.2e − 16), 0.8357 dB (p-value
< 2.2e−16), 0.5406 dB (p-value < 2.2e−16), and 0.4318 dB (p-value < 2.2e−16)
for bicubic, FSRCNN-s, FSRCNN and ESPCN, respectively. It also shows that
out model has significantly higher SSIM, and the mean differences are 0.0389
(p-value < 2.2e−16), 0.0136 (p-value < 2.2e−16), 0.0098 (p-value < 2.2e−16),
and 0.0080 (p-value < 2.2e − 16). To subjectively measure the image perceived
quality, we also visualize and compare the enhanced images in Fig. 3. The zoomed
areas in the figure are lung nodules. As the figures shown, our approach achieved
better perceived quality compared to other methods.

Fig. 3. Comparison with the-state-of-the-art works
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4 Discussion and Future Work

We present the results of our proposed 3DECNN approach to improve the image
quality of CT studies that are acquired at varying, lower resolutions. Our method
achieves a significant improvement compared to existing state-of-art deep learn-
ing methods in PSNR (mean improvement of 0.43dB and p-value < 2.2e − 16)
and SSIM (mean improvement of 0.008 and p-value < 2.2e − 16). We demon-
strate our proposed work by enhancing large slice thickness scans, which can be
potentially applied to clinical auxiliary diagnosis of lung cancer. As future work,
we explore how our approach can be extended to perform image normalization
and enhancement of ultra low-dose CT images (studies that are acquired at 25%
or 50% dose compared to current low-dose images) with the goal of producing
comparable image quality while reducing radiation exposure to patients.
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