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Abstract. Chest X-ray (CXR) is one of the most commonly prescribed
medical imaging procedures, often with over 2–10x more scans than other
imaging modalities. These voluminous CXR scans place significant work-
loads on radiologists and medical practitioners. Organ segmentation is
a key step towards effective computer-aided detection on CXR. In this
work, we propose Structure Correcting Adversarial Network (SCAN) to
segment lung fields and the heart in CXR images. SCAN incorporates
a critic network to impose on the convolutional segmentation network
the structural regularities inherent in human physiology. Specifically, the
critic network learns the higher order structures in the masks in order
to discriminate between the ground truth organ annotations from the
masks synthesized by the segmentation network. Through an adversarial
process, the critic network guides the segmentation network to achieve
more realistic segmentation that mimics the ground truth. Extensive
evaluation shows that our method produces highly accurate and realis-
tic segmentation. Using only very limited training data available, our
model reaches human-level performance without relying on any pre-
trained model. Our method surpasses the current state-of-the-art and
generalizes well to CXR images from different patient populations and
disease profiles.
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1 Introduction

Chest X-ray (CXR) is one of the most common medical imaging procedures.
Due to CXR’s low cost and low dose of radiation, hundreds to thousands of
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CXRs are generated in a typical hospital daily, which create significant diagnos-
tic workloads. In 2015/16 year over 22.5 million X-ray images were requested in
UK’s public medical sector, constituting over 55% of the total number of medical
images and dominating all other imaging modalities such as computed tomogra-
phy (CT) scan (4.5M) and MRI (3.1M) [4]. Among X-ray images, 8 million are
Chest X-rays, which translate to thousands of CXR readings per radiologist per
year. The shortage of radiologists is well documented across the world [11,14].
It is therefore of paramount importance to develop computer-aided detection
methods for CXRs to support clinical practitioners.

Fig. 1. Two example chest X-ray (CXR) images from two dataset: JSRT (top) and
Montgomery (bottom). The left and right columns show the original CXR images and
the lung field annotations by radiologists. JSRT (top) additionally has the heart anno-
tation. Note that contrast can vary significantly between the dataset, and pathological
lung profiles such as the bottom patient pose a significant challenge to the segmentation
problem.

Fig. 2. Important contour landmarks around lung fields: aortic arch (1) is excluded
from lung fields; costophrenic angles (3) and cardiodiaphragmatic angles (2) should be
visible in healthy patients. Hila and other vascular structures (4) are part of the lung
fields. The rib cage contour (5) should be clear in healthy lungs.

An important step in computer-aided detection on CXR images is organ seg-
mentation. The segmentation of the lung fields and the heart provides rich struc-
tural information about shape irregularities and size measurements [3] that can
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be used to directly assess certain serious clinical conditions, such as cardiomegaly
(enlargement of the heart), pneumothorax (lung collapse), pleural effusion, and
emphysema. Furthermore, explicit lung region masks can also mask out non-lung
regions to minimize the effect of imaging artifacts in computer-aided detection,
which is important for the clinical use [13].

One major challenge in CXR segmentation is to incorporate the implicit
medical knowledge involved in contour determination. For example, the heart
and the lung contours should always be adjacent to each other due to definition
of the lung boundaries (Sect. 2). Moreover, when medical experts annotate the
lung fields, they look for certain consistent structures surrounding the lung fields
(Fig. 2). Such prior knowledge helps resolve ambiguous boundaries caused by
pathological conditions or poor imaging quality, as can be seen in Fig. 1. There-
fore, a successful segmentation model must effectively leverage global structural
information to resolve the local details.

Unfortunately, unlike natural images, there are very limited CXR data
because of sensitive privacy issues. Even fewer training data have pixel-level
annotations, due to the expensive label acquisition involving medical profession-
als. Furthermore, CXRs exhibit substantial variations across different patient
populations, pathological conditions, as well as imaging technology and opera-
tion. Finally, CXR images are gray-scale and are drastically different from nat-
ural images, which may limit the transferability of existing models. Existing
approaches to CXR organ segmentation generally rely on hand-crafted features
that can be brittle when applied to different patient populations, disease pro-
files, or image quality. Furthermore, these methods do not explicitly balance
local information with global structure in a principled way, which is critical to
achieving realistic segmentation outcomes suitable for diagnostic tasks.

In this work, we propose to use the Structure Correcting Adversarial Network
(SCAN) framework that incorporates a critic network to guide the convolutional
segmentation network to achieve accurate and realistic organ segmentation in
chest X-rays. By employing a convolutional network approach to organ segmen-
tation, we side-step the problems faced by existing approaches based on ad hoc
feature extraction. Our convolutional segmentation model alone can achieve per-
formance competitive with existing methods. However, the segmentation model
alone cannot capture sufficient global structures to produce natural contours due
to the limited training data. To impose regularization based on the physiological
structures, we introduce a critic network which learns the higher order structures
in the masks in order to discriminate between the ground truth organ annotations
from the masks synthesized by the segmentation network. Through an adversar-
ial training process, the critic network effectively transfers this learned global
information back to the segmentation network to achieve realistic segmentation
outcomes that mimic the ground truth.

Without using any pre-trained models, SCAN produces highly realistic and
accurate segmentation even when trained on a very small dataset. With the global
structural information, our segmentation model is able to resolve difficult bound-
aries that require a strong prior knowledge. SCAN improves the state-of-the-art
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lung segmentation methods [1,12,15] and outperforms strong baselines includ-
ing U-net [9] and DeepLabV2 [2], achieving performance competitive with human
experts. Furthermore, SCAN is more robust than existing methods when applied
to different patient populations. To our knowledge, this is the first successful appli-
cation of convolutional neural networks (CNN) to CXR image segmentation, and
our CNN-based method can be readily integrated for clinical tasks such as auto-
mated cardiothoracic ratio computation [3]. We note that SCAN is similar to [8] in
applying adversarial methods to segmentation. Further related work may be found
in supplemental materials.

2 Structure Correcting Adversarial Network

We propose to use adversarial training for segmenting CXR images. Figure 3
shows the overall SCAN framework in incorporating the adversarial process into
the semantic segmentation. The framework consists of a segmentation network
and a critic network that are jointly trained. The segmentation network makes
pixel-level predictions of the target classes, playing the role of the generator in
Generative Adversarial Network (GAN) [5] but conditioned on an input image.
On the other hand, the critic network takes the segmentation masks as input
and outputs the probability that the input mask is the ground truth annotation
instead of the prediction by the segmentation network.

Fig. 3. Overview of the proposed SCAN framework that jointly trains a segmentation
network and a critic network through an adversarial process. The segmentation network
produces a mask prediction. The critic takes either the ground truth mask or the
predicted mask and outputs the probability estimate of whether the input is the ground
truth (with training target 1) or predicted mask (with training target 0).

The higher order consistency enforced by the critic is particularly desirable
for CXR segmentation. Human anatomy, though exhibiting substantial variations
across individuals, generally maintains a stable relationship between physiologi-
cal structures (Fig. 2). CXRs also pose consistent views of these structures thanks
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to the standardized imaging procedures. We can, therefore, expect the critic to
learn these higher order structures and guide the segmentation network to gener-
ate masks more consistent with the learned global structures.

Training Objectives. The networks can be trained jointly through a minimax
scheme that alternates between optimizing the segmentation network and the
critic network. Let S, D be the segmentation network and the critic network,
respectively. The data consist of the input images xi and the associated mask
labels yi, where xi is of shape [H,W, 1] for a single-channel gray-scale image
with height H and width W , and yi is of shape [H,W,C] where C is the number
of classes including the background. Note that for each pixel location (j, k),
yjkc
i = 1 for the labeled class channel c while the rest of the channels are zero

(yjkc′
i = 0 for c′ �= c). We use S(x) ∈ [0, 1][H,W,C] to denote the class probabilities

predicted by S at each pixel location such that the class probabilities sum to 1
at each pixel. Let D(xi,y) be the scalar probability estimate of y coming from
the training data (ground truth) yi instead of the predicted mask S(xi). We
define the optimization problem as

min
S

max
D

{
J(S, D) :=

N∑

i=1

Js(S(xi),yi) − λ
[
Jd(D(xi,yi), 1) + Jd(D(xi, S(xi)), 0)

]}
,

(1)
where Js(ŷ,y) := 1

HW

∑
j,k

∑C
c=1 −yjkc ln ŷjkc is the multi-class cross-entropy

loss for predicted mask ŷ averaged over all pixels. Jd(t̂, t) := −{t ln t̂ + (1 −
t) ln(1 − t̂)} is the binary logistic loss for the critic’s prediction. λ is a tuning
parameter balancing pixel-wise loss and the adversarial loss. We can solve Eq. (1)
by alternating between optimizing S and optimizing D with corresponding loss
function. See supplemental materials for details.

Fig. 4. The segmentation network architecture. (a) Fully convolutional network for
dense prediction. (b) The residual block architecture is based on [6]. Further details
are in supplementary materials.

Network Architectures. The segmentation network is a fully convolutional
network (FCN) [2,7]. Figure 4 details our FCN architecture. The segmentation
network contains 271k parameters, 500x smaller than VGG-based FCN [7]. Our
FCN is highly parsimonious to adpat to the stringent dataset size of the medical
domain: our training dataset of 247 CXR images is orders of magnitude smaller
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than the dataset in the natural image domains. Furthermore, CXR is gray-scale
with consistent viewpoint, which can be captured by fewer feature maps and thus
fewer parameters. The parsimonious network construction allows us to optimize
it efficiently without relying on any existing trained model, which is not readily
available for the medical domain. Figure 5 shows the critic architecture, which
has 258k parameters.

Fig. 5. The critic network architecture. Our critic FCN mirrors the segmentation net-
work (Fig. 4). The training target is 0 for synthetic masks; 1 otherwise. Further details
are in supplementary materials.

3 Experiments

We perform extensive evaluation of the proposed SCAN framework and demon-
strate that our approach produces highly accurate and realistic segmentation of
CXR images.

Dataset and Protocols. We use the following two publicly available datasets to
evaluate our proposed SCAN framework. The datasets come from two different
countries with different lung diseases, representing diverse CXR samples. JSRT.
The dataset contains 247 CXRs, among which 154 have lung nodules and 93 have
no lung nodule [10,12] (Fig. 1). Montgomery. The Montgomery dataset, col-
lected in Montgomery County, Maryland, USA, consists of 138 CXRs, including
80 normal patients and 58 patients with manifested tuberculosis (TB) [1]. The
CXR images are 12-bit gray-scale images of dimension 4020×4892 or 4892×4020.
Only the lung masks annotations are available (Fig. 1). We scale all images to
400 × 400 pixels, which retains visual details for vascular structures in the lung
fields and the boundaries. The evaluation metrics are Intersection-over-Union
(IoU) and Dice Coefficient. We present the details of data processing and eval-
uation metrics in Supplementary Materials.

Quantitative Comparisons. We randomly split the JSRT dataset into the
development set (209 images) and the evaluation set (38 images). We tune our
architecture and hyperparameter λ (Eq. (1)) using a validation set within the
development set and fix λ = 0.01. We use FCN to denote the segmentation
network only architecture, and SCAN to denote the full framework with the
critic.

We investigate how SCAN improves upon FCN. Table 1 shows the IoU and
Dice scores using JSRT dataset. We observe that the adversarial training signif-
icantly improves the performance. In particular, IoU for the two lungs improves
from 92.9% to 94.7%.
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Table 1. IoU and Dice scores on JSRT evaluation set for left lung (on the right side
of the PA view CXR), right lung (on the left side of the image), both lungs, and the
heart. The model is trained on the JSRT development set. ± represents one standard
deviation estimated from bootstrap.

FCN SCAN

IoU Left Lung 91.3% ± 0.9% 93.8% ± 0.8%

Right Lung 94.2% ± 0.2% 95.5% ± 0.2%

Both Lungs 92.9% ± 0.5% 94.7% ± 0.4%

Heart 86.5% ± 0.9% 86.6% ± 1.2%

Dice Left Lung 95.4% ± 0.5% 96.8% ± 0.5%

Right Lungs 97.0% ± 0.1% 97.7% ± 0.1%

Both Lungs 96.3% ± 0.3% 97.3% ± 0.2%

Heart 92.7% ± 0.6% 92.7% ± 0.2%

Fig. 6. Visualization of segmentation results on 4 patients, one per column. The left
two columns are patients from the JSRT evaluation set with models trained on JSRT
development set. The right two columns are from the Montgomery dataset using a
model trained on the full JSRT dataset but not Montgomery, which is a much more
challenging scenario. Note that only the two patients from JSRT dataset (left two
columns) have heart annotations for evaluation of heart area IoU. The contours of the
predicted masks are added for visual clarity.
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Fig. 7. Comparison with the current state-of-the-art [1]. SCAN produces sharp con-
tours at the costophrenic angles for the left two columns (from the JSRT evaluation
set). Furthermore, our model generalizes well to different patient populations and imag-
ing setup, as shown in the Montgomery CXR in the right two columns. [1] struggles
on Montgomery data due to the mismatch between train and test patient lung profiles
(JSRT and Montgomery dataset, respective).

Table 2 compares our approach to several existing methods on the JSRT
dataset, as well as human performance. Our model surpasses the current state-
of-the-art method based on registration-based model [1] by a significant margin.
Additionally, we compare with other standard CNN approaches for semantic
segmentation: DeepLabV2 with ResNet101 [2] and U-Net [9] and demonstrate
the advantage of our parsimonious architecture and adversarial training. Impor-
tantly, our method is competitive with the human performance for both lung
fields and the heart.

For clinical deployment, it is important for the segmentation model to gen-
eralize to a different population with different patient population and image
qualities, such as when deployed in another country or a specialty hospital with
very different disease distributions. We therefore train our model on the full
JSRT dataset, which is collected in Japan from a population with lung nodules,
and test the trained model on the full Montgomery dataset, which is collected
in the U.S. from patients potentially with TB. The two datasets present very
different contrast and diseases (Fig. 1). Table 3 shows that FCN alone does not
generalize well to a new dataset, but SCAN substantially improves the perfor-
mance, surpassing [1].

We further investigate the scenario when training on the two development
sets from JSRT and Montgomery combined to increase variation in the training
data. Without any further hyperparameter tuning, SCAN improves the IoU on
two lungs to 95.1% ± 0.43% on the JSRT evaluation set, and 93.0% ± 1.4% on
the Montgomery evaluation set, a significant improvement compared with when
training on JSRT development set alone.
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Table 2. Comparison with existing single-model approaches to lung field segmentation
on JSRT dataset. Note that [12,15] use different data splits than our evaluation.

IoU (Lungs) IoU (Heart)

Human Observer [12] 94.6% ± 1.8% 87.8% ± 5.4%

Ours (SCAN) 94.7% ± 0.4% 86.6% ± 1.2%

Registration-based [1] 92.5% ± 0.4% –

DeepLabV2 101 [2] 85.7% ± 0.9% –

U-net [9] 84.4% ± 1.3% –

ShRAC [15] 90.7% ± 3.3% –

ASM [12] 90.3% ± 5.7% 79.3% ± 11.9%

AAM [12] 84.7% ± 9.5% 77.5% ± 13.5%

Mean Shape [12] 71.3% ± 7.5% 64.3% ± 14.7%

Qualitative Comparison. Figure 6 shows the qualitative results from these
two experiments. The failure cases in the middle row by our FCN reveal the dif-
ficulties arising from CXR images’ varying contrast across samples. For example,
the apex of the ribcage of the rightmost patient’s is mistaken as an internal rib
bone, resulting in the mask “bleeding out” to the black background, which has
a similar intensity as the lung field. Vascular structures near mediastinum and
anterior rib bones (which appears very faintly in the PA view CXR) within the
lung field can also have similar intensity and texture as the exterior boundary,
causing prediction errors in the middle two columns for FCN. SCAN significantly
improves all of the failure cases and produces much more realistic outlines of the
organs. SCAN also sharpens the segmentation of costophrenic angle (the sharp
angle at the junction of ribcage and diaphragm), which are important in diag-
nosing pleural effusion and lung hyperexpansion, among others.

Figure 7 compares SCAN with the current state-of-the-art [1] qualitatively.
We restrict the comparison to lung fields, as [1] only supports lung field segmenta-
tion. SCAN generates more accurate lung masks especially around costophrenic
angles when tested on the same patient population (left two columns of Fig. 7).
SCAN also generalizes better to a different population in the Montgomery
dataset (right two columns of Fig. 7) whereas [1] struggles with domain shift.

Our SCAN framework is efficient at test time, as it only needs to perform
a forward pass through the segmentation network but not the critic network.
Table 4 shows the run time of our method compared with [1] on a laptop with
Intel Core i5. [1] takes much longer due to the need to search through lung
models in the training data to find similar profiles, incurring linear cost in the
size of training data. In clinical setting such as TB screening [14] a fast test time
result is highly desirable.
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Table 3. Performance on the full Montgomery dataset using models trained on the
full JSRT dataset. Compared with the JSRT dataset, the Montgomery dataset exhibits
a much higher degree of lung abnormalities and varying imaging quality, testing the
transferrability of the models.

IoU (Both Lungs)

Ours (SCAN) 91.4% ± 0.6%

Ours (FCN) 87.1% ± 0.8%

Registration [1] 90.3% ± 0.5%

Table 4. Prediction time for each CXR image (resolution 400 × 400) from the Mont-
gomery dataset on a laptop with Intel Core i5, along with the estimated human time.

Test time

Ours (SCAN) 0.84 s

Registration [1] 26 s

Human ∼2 min
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