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Abstract. Precise localization of anatomical structures in 3D medical
images can support several tasks such as image registration, organ seg-
mentation, lesion quantification and abnormality detection. This work
proposes a novel method, based on deep reinforcement learning, to
actively learn to localize an object in the volumetric scene. Given the
parameterization of the sought object, an intelligent agent learns to opti-
mize the parameters by performing a sequence of simple control actions.
We show the applicability of our method by localizing boxes (9 degrees of
freedom) on a set of acquired MRI scans of the brain region. We achieve
high speed and high accuracy detection results, with robustness to chal-
lenging cases. This method can be applied to a broad range of problems
and easily generalized to other type of imaging modalities.
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1 Introduction

Localization of anatomical structures in medical imaging is an important prereq-
uisite for subsequent tasks such as volumetric organ segmentation, lesion quan-
tification and abnormality detection. Ensuring consistency in the local context
is one of the key problems faced when training the aforementioned tasks.

In this paper, we investigate a new approach, to simplify upstream localiza-
tion of the region of interest. In particular, a deep reinforcement-learning agent
is trained to learn the search strategy that maximizes a reward for accurately
localizing the sought anatomy. The benefit of the proposed method is that it
eliminates exhaustive search or the use of generic nonlinear optimization tech-
niques by learning optimal convergence path. The method is demonstrated for
localizing a specific box around the brain in head MRI, achieving performances
in the range of the inter-observer variability with an average processing time of
0.6 s per image.
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2 Related Work

2.1 Object Localization in 3D Medical Imaging

Several methods have been proposed for automatic localization of anatomical
structures in the context of 3D data.

Atlas-based registration methods [1] solve the object localization task by
registering input data to a set of images present in an atlas database. By trans-
forming these images to a common standard space the known shapes of the atlas
can be aligned to match the input unseen data. These methods require complex
non-rigid registration and are hardly scalable to large 3D-volumes.

Regression-based methods [2,3] directly learn the non-linear mapping from
voxels to parameters by formulating the localization as a multivariate regression
problem. These methods are difficult to train, especially in problems where the
dataset has a large variation in the field of view, limiting the applicability in 3D
medical imaging.

Classification-based methods are usually done in two steps: discretization of
the parametric space in a large set of hypotheses and exhaustive testing through
a trained classifier. The hypothesis with the maximum confidence score is kept
as detection result. Marginal Space Learning (MSL) [4,5], widely used approach,
reduces the search by decoupling the task in three consecutive stages: location,
orientation and size. This method manually imposes dependencies in the para-
metric search space. It can lead to suboptimal solutions and is hard to generalize.

Recent work [10] proposes to apply faster R-CNN [9] techniques to medical
imaging analysis. Faster R-CNN jointly performs object classification and object
localization in a single forward pass, significantly decreasing the processing time.
However, this architecture requires very large annotated datasets to train and
can be hardly generalizable to the variety of input clinical cases.

2.2 Deep Reinforcement Learning as a Search Strategy

In contrast to traditional approaches, Ghesu et al. [6] use reinforcement learning
to identify the location of an anatomical landmark in a set of image data. They
reformulate the detection problem as a sequential decision task, where a goal-
directed intelligent agent can navigate inside the 3D volume through simple
linear translation actions. However the framework is limited to finding a set
of coordinates (x, y, z). We build upon their work and propose to extend the
method to a wider range of image analysis applications by expanding the search
space to an nonlinear multi-dimensional parametric space.

In this paper, we develop a deep reinforcement learning-based method to
automatically estimate the 9 parameters (position, orientation and scale) of an
anatomical bounding box.
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3 Method

The sought object is modeled with a set of D independent parameters {xi}Di=1.
Reachable parameter values form a D-dimensional space where an instance is
uniquely represented as a point of coordinates (x1, . . . , xD). The goal is to locate
an object in an input 3D scan, or equivalently to find an optimal parameter vector
x∗ = (x∗

1, . . . , x
∗
D) in the parameter space.

This work deploys an artificial intelligent agent that can navigate into the
D-dimensional parametric space with the goal of reaching the targeted posi-
tion x∗. Based on its own experience, the autonomous agent actively learns to
cope with the uncertain environment (volumetric image signal) by performing a
sequence of simple control actions. To optimize the control strategy of the agent
inside this D-dimensional space, an adaptive sequential search across different
scale representations of the environment is proposed. As in [6], our work follows
the concepts of deep reinforcement learning and multi-scale image analysis but
extended for a search in high-dimensional nonlinear parametric spaces. Figure 1
gives an overview of the proposed method.
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Fig. 1. Schematic illustration of the proposed control strategy. Measurement from the
image (input state) drive the output of the deep-Q-network which itself drive the agent
decisions. In the proposed MDP, the agent follows a multi-scale progressive control
strategy and has D = 9 degrees of freedom to transform the box (3 for position, 3 for
orientation and 3 for scale).

3.1 Object Localization as a Markov Decision Process

The D-dimensional parametric space is discretized into regular intervals in every
dimension, giving the set of reachable positions by the agent.

We model the problem as a Markov Decision Process (MDP), defined by
a tuple of objects (S,A, p,R, γ) where S is the set of possible states, p is the
transition probability distribution, A is the set of possible actions, R is a scalar
reward function, and γ is the discount factor. The states, actions and reward of
the proposed MDP are described below.
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State representation s: At each time step t, the 3D-volume environment returns
the observed state of the world st as the current visible region by the agent.
The current parameters xt define a certain region in the physical space. We set
the visibility of the agent to be the content of this region plus a fixed margin of
voxels to provide additional context. We resample it to match a fixed-size grid
of voxels that we use as input state st of the network. This operation involves
rotation and scaling of the 3D volume, and is performed at each agent step.

Control actions a: At each time step, the agent can choose between 2D move
actions to modify the current object geometry xt or to terminate the search with
the stop action. The agent movements in the parametric space are represented as
unit-length steps along one of the of the basis vectors (−e1,+e1, . . . ,−eD,+eD),
where ed denotes the vector with a 1 in the dth coordinate and 0’s elsewhere.

Reward function r: The agent learns a strategy policy with the goal of maximizing
thecumulative future rewardoveroneepisodeR =

∑T
t=0 γtrt.Wedefineadistance-

based reward: rt =

⎧
⎪⎪⎨

⎪⎪⎩

dist(xt, x
∗) − dist(xt+1, x

∗) if at ∈ {1, . . . , 2D}(
dist(xt,x

∗)−dmin

dmax−dmin
− 0.5

)
∗ 6 if at = 2D + 1

−1 if st+1 not legal state

where

dist(x, x′) defines a metric distance between two objects x and x′ in the parametric
space. The reward gives the agent an evaluative feedback each time it chooses an
actionat from the current state st. Intuitively, the reward is positivewhen the agent
gets closer to the ground truth target and negative otherwise. If one move action
leads toanon-legal statest+1, theagent receivesanegative reward−1.Astate isnon
legal if one of the parameters is outside of a predefinedallowed search range.Finally,
if the agent decides to stop, the closer it is from the target the greater reward it gets
andreversely.Thereward isboundedbetween [−1; 1] forchoosingamove actionand
between [−3; 3] for the stop action. Possible metric distances include the �p-norm
family, the intersection over union and the average corner-to-corner distance.

Deep Reinforcement Learning to Find the Optimal control Strat-
egy: We use Q-learning combined with a neural network function approximator
due to the lack of prior knowledge about the state-transition and the reward
probability distributions (model-free setting) and to the high-dimensionality of
the input data (continuous volumetric images). This approach, introduced by
Mnih et al. [7], estimates the optimal action-value function using a deep Q-
network (DQN): Q∗(s, a) ≈ Q(s, a, θ). The training uses Q-learning to update
the network by minimizing a sequence of loss functions Li(θi) expressing how
far Q(s, a; θi) is from its target yi: Li(θi) = Es,a,r,s′ (yi − Q(s, a; θi))

2. For effec-
tive training of the DQN, the proposed concepts of experience replay, ε-greedy
exploration and loss clipping are incorporated. At the difference of traditional
random exploration, we constrain it to positive directions (actions leading to
positive reward) to accelerate the agent’s discovery of positive reward trajec-
tory. We also use double Q-learning [8] with a “frozen” version of the online
network as target network Qtarget = Q(θi′), i′ < i.
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3.2 Multi-scale Progressive Control Strategy

Ghesu et al. [6] propose a multi-scale sampling of the global image context for
an efficient voxel-wise navigation within the three-dimensional image space. In
this work, we take a step further by proposing a progressive spanning-scheme of
the nonlinear D-dimensional search space. The goal is for the agent to develop
an optimal control strategy with incremental precision across scales.

Discretization of the continuous volumetric image: The “context” in which
evolves the agent (continuous 3D volumetric image) is downsampled into a multi-
scale image pyramid with increasing image resolution L1, L2, . . . , LN .

Discretization of the parametric search space: At each scale level Li of the image
pyramid, the D-dimensional parametric space is discretized into a regular grid of
constant scale cells Δ(i) = (Δx

(i)
1 , . . . ,Δx

(i)
D ) where Δ(i) determines the precision

of the agent control over the parameters. The agent starts the search with both
coarse field-of-view and coarse control. Following the sampling scheme of the
global image context, the agent gains finer control over the parameter each time
it transitions to a finer scale level Li+1. This scheme goes on until the finest scale
level, where the final agent position is taken as estimated localization result.

The transition between subsequent scale levels is proposed as an additional
control action (stop action), which also acts as a stopping criterion at the finest
scale level LN . Autonomously learned by the intelligent agent, a timely and
robust stopping criterion is ensured. At inference, if the maximum number of
steps is exceeded or if two complementaries actions are taken consecutively (plac-
ing the agent in an infinite loop), the stop action is forcefully triggered.

4 Experiment and Results

MRI scans of the head region can be acquired along some specific brain anatom-
ical regions to standardize orientations of acquisitions, facilitate reading and
assessment of clinical follow-up studies. We therefore propose to localize a stan-
dard box from Scout/Localizer images that covers the brain, and aligned along
specific orientations. This is a challenging task requiring robustness against vari-
ations in the localizer scan orientation, the view of the object and the brain
anatomy. In some cases, some of the brain or bone structures may be missing
or displaced either by natural developmental variant or by pathology. We refor-
mulate the task as a nonlinear parameter optimization problem and show the
applicability of the proposed method.

4.1 Dataset

The dataset consists of 530 annotated MRI scans of the head region. 500 were
used for training and 30 for testing. The 30 test cases were annotated twice by
different experts to compute the inter-rater variability. 15 additional challenging
test cases with pathologies (tumors or fluid swelling in brain tissue), in plane
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rotation of the head, thick cushion of the head rest, or cropped top of the skull
were selected to evaluate the robustness of the method.

The scale space is discretized into 4 levels: 16 mm (L1), 8 mm (L2), 4 mm
(L3) and 2 mm (L4). The images, of input resolution (1.6 × 1.5625 × 1.5625),
were isotropically down-sampled to 16, 8, 4 and 2 mm. The voxels intensities
were clipped between the 3rd and 97th percentile and normalized to the [0; 1]
range.

Ground-truth boxes have been annotated based on anatomical structures
present in the brain region. The orientation of the box is determined by posi-
tioning the brain midsagittal plane (MSP), separating the two brain hemispheres
and going through the Crista Galli, Sylvian Aqueduct and Medulla Oblongata.
The rotational alignment within the MSP is based on two anatomical points: the
inflection distinguishing the Corpus Callosum (CC) Genu from the CC Rostrum
and the most inferior point on the CC Splenium. Given this orientation, the
lower margin of the box is defined to intersect the center of C1-vertebrae arches
points. The other box extremities define an enclosing bounding box of the brain.

Following the annotation protocol, we define an orthonormal basis (i, j,k)
where i is the normal of the MSP and j defines the rotation within the MSP.
The orientation of the box is controlled by three angles: α1 and α2 which control
respectively the yaw and pitch of the MSP, and β1 which controls the inplane
roll around i. The center position is parameterized by its cartesian coordinates
C = (Cx, Cy, Cz). The scale is parametrized by the width w, depth d and height
h of the box. Control of the box parameters is shown in Fig. 1.

4.2 Results

In our experiments, the very first box is set to cover the whole image at the
coarsest scale and is sequentially refined following the agent’s decisions. The
network architecture and hyper-parameters can be found in appendix. Table 1
shows comparison between the proposed method, human performances (inter-
rater variability) and a previous landmark-based method.

The landmark-based method uses the proposed algorithm of [6] to detect
14 landmarks carefully chosen after the box definition. The midsagital plane
is consequently initialized with RANSAC robust fitting. Finally a box is fitted
with a gradient descent algorithm to minimize angular and positional errors with
respect to the detected landmarks. 8 out of the 14 landmarks are associated with
the angles α1 and α2, therefore achieving good results for these measures. On
the other hand, due to the fewer landmarks associated to β1 (2), this angle is
not robust to outliers.

The proposed method however, achieves performances in the range of the
inter-observer variability for every measure. Performing a direct optimization on
the box parameters, this work does not rely on the previous detection of specific
points. For recall the finer scale level is set to 2 mm, meaning that our method
achieves an average accuracy of 1–2 voxels precision.
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Table 1. Absolute mean and maximal errors of the 30 test cases with respect to ground
truth boxes. α1 and α2 are the angles between the i vectors projected into the XZ and
XY plane. β1 is the angle between the j vectors projected into the ground truth MSP.
δR (right), δL (left), δA (anterior), δP (posterior), δI (inferior) and δS (superior) are
the orthogonal distances from the center of the detected face to the ground truth face.
The best obtained results are shown in bold.

We did not observe any major failure over the 15 “difficult” test cases, show-
ing robustness of the method to diverse image acquisitions, patient orientations,
brain anatomy and extreme clinical cases (see Fig. 2).

(a) Case with rotation in the localizer scan orientation and tilted patient head.

(b) Extreme clinical case with tumor.

Fig. 2. Four samples of the box evolution during inference on challenging cases. The
current agent box is depicted in blue and the ground truth reference in green. (Color
figure online)
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At inference, our algorithm runs in 0.6 s on average on GPU (GEFORCE GT
X). We would like to stress that this processing time includes the 4 scale levels
navigation. If near real-time performance is desired, the search can be stopped
at 4 mm resolution with a minor loss in accuracy, reducing the average runtime
to less than 0.15 s.

5 Conclusion

This paper proposes a novel approach, based on deep reinforcement learning, to
sequentially search for a target object inside 3D medical images. The method
can robustly localize the target object and achieves high speed and high accu-
racy results. The methodology can learn optimization strategies eliminating the
need for exhaustive search or for complex generic nonlinear optimization tech-
niques. The proposed object localization method can be applied to any given
parametrization and imaging modality type.

Disclaimer: This feature is based on research, and is not commercially available.
Due to regulatory reasons, its future availability cannot be guaranteed.
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