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Abstract. In a research context, image acquisition will often involve a
pre-defined static protocol and the data will be of high quality. If we are
to build applications that work in hospitals without significant opera-
tional changes in care delivery, algorithms should be designed to cope
with the available data in the best possible way. In a clinical environ-
ment, imaging protocols are highly flexible, with MRI sequences com-
monly missing appropriate sequence labeling (e.g. T1, T2, FLAIR). To
this end we introduce PIMMS, a Permutation Invariant Multi-Modal
Segmentation technique that is able to perform inference over sets of
MRI scans without using modality labels. We present results which show
that our convolutional neural network can, in some settings, outperform
a baseline model which utilizes modality labels, and achieve comparable
performance otherwise.

1 Introduction

Over the years, public medical imaging datasets have emerged which enable
researchers to benchmark the performance of their algorithms [1]. Data is mostly
acquired from patients who have volunteered to be part of a clinical research
study and are subject to a strict study protocol. If the study involves the acqui-
sition of Magnetic Resonance Imaging (MRI) scans, the study protocol might dic-
tate the scanner choice as well as the acquisition parameters to be used [4]. In the
real unconstrained clinical setting however, MRIs are more likely to be acquired
from different machines under different acquisition protocols and parameters.
There is no guarantee that a particular sequence will be available, no guaran-
tee on the number of available modalities, no guarantee that modalities will be
unique (e.g. same sequence acquired with different orientations and contrasts),
and no guarantee that any of the modalities will be labeled appropriately for
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algorithmic use. If hospitals are to benefit from advances in neuroimaging, algo-
rithms that can cope with this lack of available modalities are necessary. We
argue that an algorithm which is to be deployed in this setting should have
two key properties: (1) permutation invariance, i.e permuting the order of the
input images should not affect the output and (2) robustness to missing modal-
ities. To this end we propose a segmentation model, with neural networks as
building blocks, which can learn with limited data and segment scans without
MR modality labels. In this work we focus on the task of segmenting white
matter hyperintensities (WMH). In studies involving WMH segmentation the
most common modalities are T1, T2 and T2-FLAIR which provide complemen-
tary information about the imaged tissue. Although T1 and T2 modalities are
created from different underlying physical signals (longitudinal and transverse
relaxation time respectively) the scans produced will almost always be a combi-
nation of both (hence the name attribute - weighted). By varying the acquisition
parameters, such as the echo and relaxation times, these underlying physical
signals are observed in different proportions [3]. Modality labels are a discrete
approximation of a continuous acquisition parameter landscape and we use this
as inspiration for the model we present.

In order to address missing modalities, research has focused mostly on gen-
erative models where missing MRI scans are synthesized or imputed [2,8]. In
the work of [6] the authors handle missing modalities without using generative
models of MR modalities. Instead of synthesizing the missing modalities, their
model, Hetero-modal Image Segmentation (HeMIS), is trained to handle missing
input modalities. More details about HeMIS can be found in Sect. 2. Although
HeMIS is successful at dealing with missing modalities, it assumes that the MR
modalities in a test case will be labeled. The authors of [10] tackle the issue of
generalizing to unseen protocols and scanners. In order to be robust to different
scanners and protocols, they propose a tuning of the batch normalization param-
eters of a CNN. However, their method still requires approximately four scans
with their associated segmentations from the unseen protocol to perform well.

We introduce a model that learns to build intermediate representations of the
images as a linear combination of the available inputs which are more continuous
than their original labels. The proposed model does not assume the modality is
known and has the ability to generalize to unseen scanners/protocols, taking
in N unordered input scans with no modality labels to produce accurate seg-
mentation masks. We provide results on a variety of datasets featuring WMH
with large variability in scanner type and acquisition parameters and show that
our model is both permutation invariant and robust to missing modalities. We
demonstrate that it can perform comparatively well with an algorithm which
utilizes the modality labels having never seen an image from that particular
protocol. Furthermore, our model can outperform the baseline method (HeMIS)
in the case where it has seen MR modality labels of the same protocol it is being
tested on.
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2 Methods

HeMIS. In HeMIS each available modality, x1, . . . , xM , is embedded with a
modality specific function φm(xm) ∈ R

D×K denoted the “back-end” to produce
embeddings. An“abstraction” layer then operates on these embeddings by com-
puting the mean and variance across their K dimensions and concatenating the
two resulting vectors φα = [Ê(φ(x)), V̂ar(φ(x))], where x ∈ R

D×M M is the
number of modalities and D is the spatial dimensions of the input. Let φα be a
fixed dimensional tensor which represents an input of variable size. This forms
the input to the final portion of the network referred to as the “frontend” which
will output a semantic segmentation map. The network is trained using a Dice
loss, first proposed in [11] as a loss function for training neural networks.

During training, random modalities are set to zero, encouraging robustness
to missing modalities. HeMIS, shown in Fig. 1, forms part of our architecture.

Our Approach. We propose a method which at test time takes in an arbitrary
number of N scans (denoted X) which do not have corresponding MR modality
labels and produces a permutation invariant representation that is also robust
to missing modalities. In theory this common representation could be applied
to a variety of tasks. In this paper we focus on white matter hyperintensity
segmentation.

The inputs are fed into an MR modality classifier fmod which outputs a
distribution over modalities for a given scan as its prediction. These modality
scores S ∈ R

M×N are combined with the inputs, X, to produce modified inputs
denoted as X̂ ∈ R

D×M . In the attention literature a distinction is drawn between
“soft” and“hard” attention [14]. Soft attention generally involves a probabilistic
weighted sum whilst a hard attention is a categorical argmax over the inputs.
With this in mind, we explore two methods for performing X → X̂: fsoft and
fhard. The function fsoft is defined as,

fsoft(X,S) =
N∑

n=1

Smnxn = x̂m (1)

Each component x̂m of the modified input X̂ is formed by taking a weighted sum
of each input xn according to the probabilities provided by S. fhard is defined as,

fhard(X,S) =
N∑

n=1

1(arg max
m∗

Sm∗n = m)xn = x̂m (2)

The modified input X̂ now consists of a finite number of modalities. The
mapping f : X → X̂ is illustrated in the blue block in Fig. 1.

Each MR modality is designed to capture fundamentally different physical
properties which justifies having individual feature extractors, φm, for each x̂m
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modality representation. The output of these modality-specific feature extractors
is collected into one tensor by taking the mean and the variance across modalities
and concatenating the result to give φα ∈ R

D×K where K is given by the choice
of filter depth in φm. This feeds into a final network, φseg which produces a
segmentation prediction. This use of modality specific models, pooling and a
separate segmentation network is the same as HeMIS and is illustrated in the
grey block in Fig. 1.

Fig. 1. Diagram showing the network architecture. During training the inputs are
X ∈ R

D×N and the corresponding ground truth binary segmentation y ∈ R
D×2. A

function fmod takes each scan as input and outputs a modality score S which produces
the representation X̂ ∈ R

D×M . The weights of φT1 , φT2 , φF and φseg are learned by
differentiating with respect to Lseg and the weights of f are learned by differentiating
with respect to Lclass. ym is a one-hot encoded modality label.

A convolutional neural network was used for fmod. A network with 36 layers
using skip connections and ReLU non-linearities inspired by the residual network
(ResNet) proposed in [7] is used. The network was trained with the categorical
cross-entropy loss which we refer to as Lclass. where ymi is a one-hot encoded
modality label and Smi is the modality score. Each of the branches φm as well
as φseg were two convolutional layers with ReLU non-linearities (more details in
Sect. 2). The parameters of φm and φseg were found by minimizing Lseg which
is the binary Dice Loss.

For two of our variants these losses were trained separately (or “offline”).
However, we also trained an“online” variant where the parameters of the modal-
ity classifier are learned using a multi-objective loss function. This loss is defined
as, Ltot = Lseg + λLclass, where λ is some choice of weighting or parametrized
weighting function. Although the loss consists of multiple objectives this should
not be considered “multi-task learning”. There is no conditional independence
between the tasks and no representation sharing — instead this can be seen as
a differentiable attention mechanism. The four variants trained are summarized
below,
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HeMIS - X→X̂ using labels, fmod trained separately from φseg, φT1 , φT2 & φF

Soft - fsoft used to create X̂, fmod trained separately from φseg, φT1 , φT2 & φF ,
Hard - fhard used to create X̂, fmod trained separately from φseg, φT1 , φT2 & φF ,
Online - fsoft used to create X̂, fmod trained jointly with φseg, φT1 , φT2 & φF .,

Implementation Details. It is important to note that the network architecture
takes in 2D patches from the image as was done in [6]. Specifically we take
patches of size 100 × 100 from 3D scans which have all been resampled to
1mm × 1mm × 1mm. This theoretical framework permits any spatial dimension
D and future work will train and run inference in full 3D.

All results were obtained using the NiftyNet framework [5], which is a wrap-
per around TensorFlow designed for medical imaging. fmod uses a standard
ResNet design with nine blocks per resolution, each with three convolutions
and ReLU activations. The network is trained using the Adam optimizer with
a learning rate of 3 × 10−4. A batch size of 64 was used on this network and
weight decay regularization of 1 × 10−4.

For each φm and φseg the implementation details from [6] were recreated.
Two convolutional layers with 48 filters, 5 × 5 kernel sizes, zero-padding and
ReLU activation were used followed by a max pooling layer with kernel size (2,
2) and a stride of 1 this preserves the spatial resolution of the image. For φseg

two convolutional layers were used, one with 16 filters, 5 × 5 kernel sizes, zero
padding and ReLU activation the last convolutional layer had 2 filters, a kernel
size of 21 × 21, zero padding and a softmax activation which provided the per
class predictions. We also utilized the pseudo-curriculum learning approach from
HeMIS. Random modalities are set to zero but the chance of setting only one or
no modalities to zero is higher. The online model was harder to train than the
offline ones. The joint training lead to odd dynamics between the classification
loss and the segmentation loss. To help stabilize the training an exponential
decay weighting was used on the classification loss in order to encourage training
it towards the start and remove its importance later on so that the model could
experiment with representations which do not match the provided labels and
not be punished by Lclass. Our best performing “online” model used λ(i) = e−γi

where i is the current iteration and γ is a decay constant hyperparameter set to
1 × 10−4.

This same ResNet architecture was used as fmod in the online case in order
to make a fair comparison in terms of number of parameters. However, in the
online setting, the batch size had to be reduced as a practical consideration as
the combination of both modality and backend models proved too large to fit in
GPU memory. All experiments were run on a single NVIDIA Titan Xp.

3 Experiments and Results

Data used in this work comes from a variety of sources, chosen to try and capture
the acquisition variability observed in a practical setting due to multiple MRI
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scanners/protocols. A subset of 973 subjects each with T1 and FLAIR scans
were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database [9]. The data in this study was collected from multiple scanners, but
used the same protocol for setting the acquisition parameters. We therefore deem
this dataset one of relatively low variance between subjects. We also utilise data
collected from the longitudinal SABRE study [13]. The data contains one cohort
of 586 subjects with T1, T2 and FLAIR obtained using the same scanner (low
variance) and another of 1263 with T1, T2 and FLAIR obtained from multiple
scanners with multiple settings (high variance). Additionally we use a dataset of
626 patients with T1 and FLAIR obtained from multiple scanners using multiple
field strengths. As no manual annotations were available for this large collection
of MRI scans, the outputs of BaMoS [12], a fully unsupervised WM lesion seg-
mentation algorithm, were quality controlled by an experienced human rater and
subsequently used as silver-standard training labels. Additionally, we evaluate
our trained models on a manually annotated dataset from the MICCAI 2017
White Matter Hyperintensity Challenge [1].

The split between training, validation and test sets was chosen in order to
measure the ability of our method at generalizing to unseen scanners and pro-
tocols. Three separate holdouts were created, defined as follows,

Silver Protocol Holdout - ADNI: 973 subjects with silver standard labels.
Gold Protocol Holdout - MICCAI2017: 60 subjects with human rater labels.
Mixed Holdout - Random 10% subset of the full data minus Silver/Gold.

Overall there was a 80/10/10 split between training, validation and test using
the 2474 subjects that are not in the gold or silver protocol holdouts. All four
models described in Sect. 2 were trained with this subset.

Table 1. Dice scores of the different models on different combinations of available
modalities. Modalities present are denoted by • and those that are missing are denoted
by ◦. Bold numbers are results which outperform the baseline model, HeMIS, with
statistical significance p < 0.01 as provided by a Wilcoxon test. Presentation of table
inspired by the one in [6]
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For the mixed holdout it was found that the classification accuracy was 99%
between all three modalities. For unseen protocols the accuracy was lower, 88%
for ADNI and 87% for MICCAI17 which showed that the inter-scanner variance
was harder to model than the inter-subject variance. For each of the holdout
sets, results are presented on all possible subsets of the available modalities. The
quantitative and qualitative results are shown in Table 1 and Fig. 2, respectively.
The brains shown are selected from the 95%, 50% and 20% percentile of Dice
score on the dataset holdout for a model shown all available modalities. We note
that the samples of very high Dice score are often the ones with large lesions
which the algorithm has managed to capture well and there is poor performance
when the contrast settings are significantly different.

We utilise the Wilcoxon signed-rank test to test whether the Dice scores from
each of our models outperforms the baseline (HeMIS). Bold values in Tables 1
denotes that the model is better than HeMIS with a statistical significance of
p < 0.01. We compare ground truths and predictions using the Dice score as well
as the average symmetric distance in order to provide a geometric evaluation.

Fig. 2. Qualitative results showing white matter lesion segmentations on the mixed
holdout set. Images show the ground truth on the left and the network predictions on
the right. Red shows the predicted segmentation. The results were chosen to highlight
the 95th, 50th, and 20th percentile in terms of Dice score for a model which is trained
on all available scans but does not use modality labels.

4 Discussion

The “hard” setting converges to HeMIS as the accuracy of the modality classifier
tends to 1. This is observed in practice. Note that the results of HeMIS are similar
to“hard” in the mixed holdout set where the modality classifier has had access
to the test set distribution and consistently worse in the Silver Protocol holdout.
It does comparatively better on the Gold Protocol as the modality classifier has
better performance on these scans than on Silver. The “soft” version matches
or improves on the performance of HeMIS and“hard” on the mixed holdout,
but does not outperform HeMIS on other holdouts. The fact that “soft” out-
perfoms“hard” is evidence towards our hypothesis that mixing the input images
can lead to better representations which improve performance on a visual task.
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This can be interpreted as a coarse attention mechanism as the transformation
from X to X̂ is linear with few degrees of freedom.

The “online” model outperforms the baseline in the mixed holdout set with
statistical significance in 6/7 cases when using the Dice score. Although the
median average symmetric distance (ASD) is higher, the average is lower in 4/7
cases with a much lower 95 percentile. There is some improvement over the
baseline model even in the protocol holdout but the gains seen in Dice score are
not reflected in the ASD. Qualitatively this is explained by the“online” method
overpredicting the positive class leading to a higher Dice score and yet missing
lesions altogether leading to a larger ASD. This gives us insights as to how we
can improve the model.

Future work will extend the “online” model to an unsupervised setting in
terms of scan labels. This is appealing not only due to the lack of modality labels
currently available in certain hospital databases but also in order to go beyond
the information contained in the modality label and towards a representation
which is more true to the underlying physical structure.

5 Conclusion

We have presented PIMMS, a segmentation algorithm for MRI scans which
simultaneously addresses the problem of missing modalities and missing modal-
ity labels in a clinical setting. We present three variants which all include a
convolutional neural network and are trained to perform modality classification
in a supervised setting. We argue that by mixing the input modalities in ratios
other than those provided by the labels we can achieve better performance. This
could be due to more accurately capturing the underlying distribution of physical
quantities, but future work is needed to make this claim. Evidence is presented
with statistical significance which suggests that a model which mixes inputs can
perform better than one which does not with all other factors kept identical.

The results show that the modality classifier almost replicates modality labels
when trained and tested on the same protocol while the categorical accuracy
reaches 88% when protocols differ at training and testing times. Our model serves
as a proof of concept for a system that could utilize all the MR scans associated
with a patient in a hospital and provide accurate segmentation predictions.

Acknowledgements. We gratefully acknowledge the support of NVIDIA Corpora-
tion with the donation of the Titan Xp GPU used for this research. Zach Eaton-Rosen is
supported by the EPSRC Doctoral Prize. Carole H. Sudre is supported by the Biomed-
ical Junior Fellowship from Alzheimer’s Society. Parashkev Nachev is funded by the
Wellcome Trust and the UCLH NIHR Biomedical Research Centre. Jorge Cardoso is
funded by Wellcome Trust.



PIMMS: Permutation Invariant Multi-modal Segmentation 209

References

1. White Matter Segmentation Grand Challenge at MICCAI 2017
2. Chartsias, A.: Multimodal MR synthesis via modality-invariant latent representa-

tion. IEEE Trans. Med. Imaging 37(3), 803–814 (2017)
3. Fischl, B., et al.: Sequence-independent segmentation of magnetic resonance

images. Neuroimage 23, S69–S84 (2004)
4. Ghafoorian, M., et al.: Location sensitive deep convolutional neural networks for

segmentation of white matter hyperintensities. CoRR abs/1610.04834 (2016)
5. Gibson, E., et al.: Niftynet: a deep-learning platform for medical imaging. arXiv

preprint arXiv:1709.03485 (2017)
6. Havaei, M., Guizard, N., Chapados, N., Bengio, Y.: HeMIS: hetero-modal image

segmentation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells,
W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 469–477. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46723-8 54

7. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In:
Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp.
630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0 38

8. Iglesias, J.E., Konukoglu, E., Zikic, D., Glocker, B., Van Leemput, K., Fischl, B.: Is
synthesizing MRI contrast useful for inter-modality analysis? In: Mori, K., Sakuma,
I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 631–
638. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40811-3 79

9. Jack, C.R.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI meth-
ods. J. Magn. Reson. Imaging 27(4), 685–691 (2008)

10. Karani, N., et al.: A lifelong learning approach to brain MR segmentation across
scanners and protocols. arXiv:1805.10170 (2018)

11. Milletari, F., et al.: V-Net: fully convolutional neural networks for volumetric med-
ical image segmentation. In: 3DV, pp. 565–571. IEEE (2016)

12. Sudre, C.H.: Bayesian model selection for pathological neuroimaging data applied
to white matter lesion segmentation. IEEE TMI 34(10), 2079–2102 (2015)

13. Tillin, T.: Southall and brent revisited: cohort profile of Sabre, a UK population-
based comparison of cardiovascular disease and diabetes in people of European,
Indian Asian and African Caribbean origins. IJEpid 41(1), 33–42 (2010)

14. Xu, K., et al.: Show, attend and tell: neural image caption generation with visual
attention. In: International Conference on Machine Learning, pp. 2048–2057 (2015)

http://arxiv.org/abs/1709.03485
https://doi.org/10.1007/978-3-319-46723-8_54
https://doi.org/10.1007/978-3-319-46493-0_38
https://doi.org/10.1007/978-3-642-40811-3_79
http://arxiv.org/abs/1805.10170

	PIMMS: Permutation Invariant Multi-modal Segmentation
	1 Introduction
	2 Methods
	3 Experiments and Results
	4 Discussion
	5 Conclusion
	References




