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Abstract. Deep learning techniques for tissue segmentation require
large amounts of data for training, testing, and cross-validation.
Manually generating such segmentations, however, is extremely time-
consuming. This can lead to such techniques being limited to imaging
modalities and populations for which ground truths already exist, over-
fitting, or the use of data that is not expert-checked and so likely to
contain errors. A need exists for a means of accelerating expert tissue-
segmentation, such as automated techniques that require little correction
and have little reliance on existing atlases. Here, we describe a method
which can reliably perform registration-free tissue-segmentation using a
single atlas that is only partially complete. This Global Approximate
Block-matching method utilizes a self-organizing map, an unorthodox
artificial neural network. This network trains quickly only on the pro-
vided partial atlas and allows these labels to be propagated through-
out the target image via block-matching. Using this technique we seg-
mented brains of 22 subjects and compared its performance to expert
ground truths. When provided with an atlas for which only 2% of vox-
els were labelled, this achieved mean dice similarity coefficients of 0.88
(grey-matter) and 0.92 (white matter). Performance improved as higher
amounts of atlas were provided, up to a maximum of 0.93 (grey-matter)
and 0.96 (white matter) when a single whole-brain atlas was provided.
Although segmentations produced by this technique are sufficiently accu-
rate to be used directly for many purposes, its primary use case may lie in
accelerating the creation of expert atlases for deep-learning techniques.
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1 Introduction

Deep learning techniques are gaining popularity for tissue segmentation but
require large amounts of data for training, testing, and cross-validation.
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Generating data ultimately requires manually delineated segmentations, but this
process can take several days to complete per volume if attention to detail is
desired. Although data augmentation can artificially boost the quantity of train-
ing data, this is unlikely to produce a satisfying dataset for cross-validation and
does not necessarily provide the true anatomical variance seen in the population.
As a result, segmentation techniques such as deep-learning are at risk of becom-
ing limited to certain magnetic resonance (MR) sequences and populations for
which ground truth data already exist. A need exists for a means of accelerating
expert tissue-segmentation. One option is to automatically generate segmenta-
tions with a method that has little-or-no requirement on existing atlases, and
to correct this segmentation as needed. A widely available tool to achieve this
is expectation-maximization (EM) segmentation, but its accuracy and ability to
self-improve when provided with human-corrected data can be limited.

Block-matching (BM) techniques are typically designed to remove image
noise but can also perform tissue segmentation [2]. Such methods typically match
similar cubes of voxels (patches) from an atlas to a target image, and compute
a ‘non-local mean’ of these patches. Alternatively, labels from these patches can
be averaged (rather than voxel intensities) to generate a probabilistic tissue seg-
mentation. Block matching leverages the small patterns that exist throughout
an image, such as the repeated sulcal folding of brain tissue. However, such
techniques are unable to take full advantage of this redundancy because exhaus-
tively comparing patches to one another is computationally expensive. To cir-
cumvent this, techniques such as volBrain [2] rely on atlas-to-target registration
and search only a local area for patches similar to a target. This requires at
least one whole-brain atlas with reasonable spatial correspondence to the target
image.

Dimensionality reduction is an alternative, or complementary, way to reduce
the computational cost of comparing patches exhaustively. The self-organizing
map (SOM) is a neural-network based non-linear dimensionality reduction tech-
nique [1]. Briefly, SOMs are implemented as a collection of nodes which each
have local connectivity, a fixed position in low dimensional space (e.g. forming a
2D grid), and a trainable position in the high-dimensional space. Through com-
petitive learning, rather than backpropagation, SOMs train quickly and provide
a smooth projection between high- and low-dimensional spaces. Intuitively, a
trained 1D SOM can be thought to optimally ‘snake’, much as principal compo-
nents analysis (PCA) draws a straight line, through high dimensional space.

We have developed a ‘Global Approximate Block-Matching’ (GAB) denoising
and segmentation algorithm. GAB requires no spatial correspondence between
the atlas and target, nor for the atlas to be completely labelled. This allows a
partially segmented image to act as an atlas for another image, or to act as its
own atlas, propagating manually segmented labels to non-segmented regions. To
achieve this, GAB performs a whole-image search for atlas patches matching each
target. To reduce this operation’s computational burden, each patch is collapsed
into a singular value (SV) through a method such as the SOM. Here, we describe
GAB and demonstrate its tissue segmentation performance using incomplete
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atlases. The accuracy and speed afforded by this method may enable rapid atlas
building, in turn enabling deep learning methods to target diverse populations
and utilize MR sequences for which training data are not yet available.

Fig. 1. In Step 1 (top left), the atlas image was split into overlapping 5 × 5 × 5
voxel patches. For each patch, a singular value (SV) was calculated using one of four
methods. Patches and their corresponding labels (not shown) were then sorted by
these SVs. In Step 2 (right), for each target patch from a target image, an SV was
calculated. Using a binary search, 1024 atlas patches with similar SVs were selected as
a ‘shortlist’. The voxel-wise sum of square differences (SSDs) were calculated for these
patches versus the target, and the 30 patches with the most similar SSDs selected,
their labels contributing toward final image reconstruction. See the text for details on
final image reconstruction.

2 Methods

We tested the ability of GAB and EM to perform a series of three-tissue (corti-
cal grey-matter, cortical white-matter, cerebrospinal fluid) segmentations in MR
images. Our dataset consisted of N4 bias-corrected MPRAGE images (0.9 mm
isotropic) from 23 participants (28.8 ± 1.5y) acquired in a previous study [4,5].
MR acquisition was approved by the local ethics committee. Participants gave
written informed consent. We also utilized the expert (manually corrected) brain
masks and expert tissue segmentations for each image generated during this
study. GAB does not require that all areas of an atlas have accompanying labels;
its segmentation accuracy was tested when provided with an atlas in varying
degrees of completion (Fig. 3). Performance was judged by the quantitative sim-
ilarity between automatically generated and expert generated segmentations.
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2.1 The “Global Approximate Block Matching” Method

Images were processed in two steps: independently-applied denoising of both
target and atlas images, followed by segmentation of the target image. Both
steps used the GAB method. Below we detail how segmentation was performed,
followed by a brief explanation as to how this was modified to perform denoising.

The GAB method, summarized in Fig. 1, accepts five images: (1) a target
image, such as a T1; (2) a target mask; (3) an atlas image; (4) an atlas mask;
and (5) atlas labels. The masked target is linearly intensity scaled to match the
histogram of the masked atlas and both are stored as 8-bit unsigned integer
images. These images are split into overlapping 5 × 5 × 5 voxel patches within
their respective brain masks. For each patch, an SV is calculated from voxel
intensities. Atlas patches are then sorted by their SV. To find matching patches
to a target, GAB conducts a binary search for the most similar atlas patch,
based on target and atlas patch SVs. This approximate best-match, and those
patches between 512 positions before and 511 positions after it in the sorted
array, constitute a 1024-patch ‘shortlist’ of items likely to be similar to the target.
The voxelwise sum of square differences (SSD) was calculated between the target
patch and shortlist to identify the 30 most similar patches to the target. The
labels for these patches are multiplied by their patch’s weight (1/(SSD+10−6)),
filtered by a Gaussian of σ = 1 voxel, and added to the appropriate label’s ‘sum’
image. These weights are multiplied by this Gaussian and added to a ‘weights’
image. Upon completion of all block matching, each sum image is divided by the
weights image to generate a final tissue probability map. This ‘unweighting’ is
required as each sum image voxel is contributed to by up to 125 block-matching
operations, each operation in turn summing 30 weighted patches. A voxelwise
maximum likelihood approach converts the probabilistic tissue maps into a hard
segmentation.

2.2 Singular Value Calculation

Four GAB variants were tested, differing from one another by their SV calcula-
tion method: PCA (ε0), mean voxel intensity, random (SV randomly generated),
and SOM. Each SOM was arranged as 4096 nodes equally-spaced in 1D, and
trained on up to 107 randomly selected patches from the input image. SV calcu-
lation using the SOM was performed by locating a patch’s continuous position
in this array (i.e. between the best matched node and its most similar neighbor)
based on voxel-wise SSD. PCA transformations were calculated from the same
randomly selected patches. We also re-ran GAB-SOM with an artificially boosted
number of atlas patches, providing the algorithm with 48 unique augmentations
(all rotations, plus their mirror images) of each labelled atlas patch.

Denoising utilized GAB with two modifications to the method detailed above:
(1) patches were 3 × 3 × 3 in size; (2) the target, atlas, and label images were
the same, I.E. the method matched patches within the target image to others
within that same image. As such, it reconstructed a single low-noise version of
the input image, rather than several probabilistic tissue maps. Denoising was
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always performed with the SOM SV method, the performance of which was not
quantified, as it is beyond the intended scope of this paper.

2.3 Expectation Maximization

For a comparator method, we used an Expectation Maximization segmentation
algorithm with a modified Markov Random Field implementation. This method
was selected as it has previously been reported to perform robustly in the absence
of atlas based priors [3]. EM was executed with a single Gaussian per tissue
class, initialized with means of 0, 2, and 3 for cerebrospinal fluid (CSF), grey-
matter (GM), and white-matter (WM) respectively, each with σ = 1. These
values were selected after empirical testing demonstrated that they produced
reliable segmentation performance in a similar dataset acquired on the same
scanner. Moderate deviations from this initialization did not meaningfully alter
the performance of EM for the current dataset.

2.4 Atlas and Performance Metric

We use the term ‘atlas availability’ herein to refer to the fraction of an atlas’
labels which were made available to the segmentation algorithm. One randomly
selected image was assigned as an atlas; the remaining 22 images constituted
targets for segmentation. This atlas was converted into a series of ‘partially
complete’ atlases, which were then used by GAB to segment targets. This was
performed as follows: (1) 11 × 11 × 11 voxel masks were placed on the atlas in the
left temporal lobe, right temporal lobe, and frontal lobe, constituting the atlas
labels mask (Fig. 3); (2) for each target image, the whole brain was segmented
using only the atlas labels within this masked area and the result saved; (3)
the labels mask was dilated with 6 connectivity and cropped to the brain mask.
Steps 2 and 3 were repeated until the labels mask was identical to the brain
mask, providing segmentations for each image across a range (0.2%–100%) of
atlas availabilities. Dice similarity coefficients (DSC) for cortical GM and WM
were calculated, within the entire brain mask, for each target segmentation by
comparison to that target’s corresponding expert segmentation.

3 Results

Methods were implemented in .Net 4.0 and OpenCL 1.2 and ran on a Dual
Xeon 8-core E5-2650 node with 128 GB of RAM and 3 Kepler Tesla K20 GPUs.
Denoising + segmentation with GAB took 7–11.5 min in total, with processing
using more-complete atlases taking longer than with incomplete atlases. EM
segmentation ran in <1 min in each case. EM segmentation achieved DSCs
of 0.67 ± 0.21 (mean ± SD; GM) and 0.84 ± 0.19 (WM). All GAB meth-
ods except GAB-Random outperformed EM segmentation at atlas availability
≥0.8%. This accuracy increased markedly until 6% atlas availability, after which
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Fig. 2. Dice similarity coefficients for grey (left) and white (right) matter for segmen-
tations generated by GAB, when provided with differing proportions of atlas. GAB
methods are color-coded by their SV method as follows: Red, Random; Gold, PCA;
Blue, Mean; Green, SOM. All methods achieved a dice similarity coefficient of 0.51 for
white matter segmentation at an atlas availability of 0.24%, not shown here. (Color
figure online)

Table 1. Dice similarity coefficients for GAB-derived grey matter (GM) and white
matter (WM) segmentations at four different atlas availabilities. Each row indicates a
different singular-value (SV) calculation method. SOM-48 indicate SOM-based SV cal-
culation, with 48 patch augmentations (see text). All standard deviations were <0.02,
except GAB-Random which demonstrated SDs of 0.03 (GM) and 0.02 (WM) at 100%
atlas availability.

SV GM WM

0.9% 2% 6% 100% 0.9% 2% 6% 100%

SOM-48 0.88 0.90 N/A N/A 0.92 0.88 N/A N/A

SOM 0.84 0.89 0.91 0.93 0.91 0.85 0.95 0.96

Mean 0.86 0.88 0.90 0.90 0.89 0.86 0.94 0.94

PCA 0.84 0.87 0.87 0.89 0.90 0.85 0.94 0.95

Random 0.84 0.86 0.86 0.84 0.89 0.85 0.94 0.91

a gradual increase was seen (Fig. 2; Table 1). GAB-SOM provided superior seg-
mentation accuracy to other methods, particularly for GM labelling, with more
stable results than GAB-PCA or GAB-Random (Fig. 2). When the SOM-based
analyses were run with 48 augmentations of each atlas patch, the atlas avail-
ability required to achieve a DSC of 0.90 in both tissue classes fell from 3.1% to
1.7%. Such augmentation, however, was infeasible in the current implementation
above 3.5% atlas availability because of GPU memory constraints.
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Fig. 3. Top: The atlas cropped to the labels-mask at 0.2% (left) and 2% (right) avail-
ability. The third labelled region is not visible in this slice. Bottom: Segmentation
results for a representative dataset. The left segmentation was generated using GAB-
SOM with 48 augmentations at 2% atlas availability. The right segmentation was gen-
erated with GAB-SOM at 100% atlas availability.

4 Discussion

Artificial neural networks such as deep learning can require large amounts of
data for training, validation, and cross-validation in order to demonstrate task
proficiency. In the case of brain-tissue segmentation, this often means that a large
number of whole-brain tissue segmentations are required, but the time cost of
generating these accurately can be very high. Here, we have demonstrated a
Global Approximate Block-matching method which, unlike most methods, can
segment a full brain MR image with reasonable accuracy when provided with
an atlas that is predominantly incomplete. We found that this method reliably
outperformed EM, an alternative technique with similar advantages, when pro-
vided with an atlas for which ≥0.8% of voxels had been manually labelled. GAB
was most effective when using an SOM for SV calculation, achieving dice coef-
ficients of ≥0.9 for both cortical GM and cortical WM when provided with an



Rapid Training Data Generation for Tissue Segmentation 117

atlas that was as low as 1.7% complete (Fig. 2). GAB-SOM also demonstrated
performance comparable with some deep learning networks when provided with
a whole brain atlas [6]. The relative performance of GAB-SOM is likely due to
the SOM’s highly non-linear nature enabling an effective whole-brain search for
similar patches to a target. This is indicated by the relatively poorer perfor-
mance of GAB when relying on PCA or mean voxel intensity for SV calculation,
particularly at moderate atlas availabilities.

One advantage of GAB, for generation of ‘ground truth’ segmentations, is
that it can be used in an iterative strategy in which an image is automatically
segmented, then partially manually corrected, in a repeated manner. In such a
strategy, a target image would act as its own atlas, and the GAB-based segmen-
tation can be expected to improve with each iteration. This has the potential to
drastically lower the time-cost of generating the first ‘ground truth’ segmentation
of a series. For segmentations of subsequent images, GAB is likely to perform a
high-quality segmentation, as this first image can be provided as an atlas.

A block-matching segmentation algorithm, volBrain, has previously been
described [2]. Presently, volBrain and GAB have different strengths. Whilst vol-
Brain relies on multiple whole-brain atlases in order to perform multi-atlas label
fusion, GAB requires only a fraction of an atlas to be provided. This makes GAB
a stronger candidate for creating expert segmentations for new populations and
imaging modalities. GAB also does not limit patch searches to a local area. This
means it is not reliant on image registration, and may perform sensibly when
target and atlas anatomy differ meaningfully, such as with pathology. However,
unlike volBrain, modifications are likely to be needed for accurate delineation of
localized tissues such as the deep grey matter. Potential modifications exist, such
as including a patch’s location as parameters in the SV calculation, or splitting
volumes into regions which are segmented using different partial atlases, but
these modifications are yet untested.

In conclusion, we proposed a Global Approximate Block-matching method
that relies on the SOM as a powerful dimensionality reduction technique. When
provided with minimal training data, this method generates accurate brain tissue
segmentations that have little need for manual correction. This technique may
prove a useful tool for quickly generating training data sets for deep learning
methods targeting imaging modalities and populations for which ground truth
data are not widely available.
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