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Abstract. Semantic segmentation for 3D medical images is an impor-
tant task for medical image analysis which would benefit from more effi-
cient approaches. We propose a 3D segmentation framework of cascaded
fully convolutional networks (FCNs) with contextual inputs and additive
outputs. Compared to previous contextual cascaded networks the addi-
tive output forces each subsequent model to refine the output of previous
models in the cascade. We use U-Nets of various complexity as elemen-
tary FCNs and demonstrate our method for cartilage segmentation on a
large set of 3D magnetic resonance images (MRI) of the knee. We show
that a cascade of simple U-Nets may for certain tasks be superior to a sin-
gle deep and complex U-Net with almost two orders of magnitude more
parameters. Our framework also allows greater flexibility in trading-off
performance and efficiency during testing and training.

1 Introduction

Recently, deep convolution neural networks (CNNs) have shown excellent per-
formance on various computer vision and medical image analysis tasks includ-
ing semantic segmentation [1]. Early CNN approaches use sliding windows and
approach segmentation as many independent classifications, which is inefficient.
Fully-convolutional networks (FCN) [2] instead directly operate on full images.
Consequentially, FCNs are more efficient and many FCN variants achieve state-
of-the-art segmentation performance [3,4]. When dealing with 3D image seg-
mentations, the simplest approach is to treat a 3D volume as a sequence of
2D slices [5] and to segment them independently with a 2D CNN. However,
this overlooks correlations across slices. To account for such correlations while
avoiding 3D CNNs, triplanar schemes [6] have been proposed which apply 2D
CNNs on image slices from three orthogonal planes of an image volume. Natu-
rally, applying a 3D CNN to an image volume can take advantage of the full 3D
information, but has high computational cost and memory requirements.

Most existing work on semantic segmentation focuses on improving perfor-
mance by designing deeper and more complex networks. This, generally results
in better performance, but comes at the cost of additional complexity, especially
for the segmentation of 3D images. Hence, it would be beneficial to design more
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efficient network architectures for 3D segmentation while retaining segmenta-
tion performance. Inspired by work that applies an auto-context approach [7] to
CNN models [8] and additive learning schemes such as boosting [9], we propose
a cascaded 3D semantic segmentation framework composed of a sequence of 3D
FCNs with contextual inputs and additive outputs. As an alternative design
strategy to a monolithic complex deep FCN, we show that such a sequence of
simpler and shallower FCNs achieves performance on par with a more complex
network, but using two orders of magnitude less parameters. This approach also
allows to trade-off model accuracy with run-time and memory requirements.

Contributions: (1) We show that a cascaded model composed of several simple
FCNs can perform as well as a single complex FCN with almost two orders of
magnitude more parameters, resulting in better computational efficiency. (2) Our
additive model shows better performance than an auto-context approach using
contextual input (i.e., segmentations) only without the additive strategy. (3) We
provide an analysis to give insight into why the additive output helps refine the
segmentation model. (4) Lastly, we evaluate our model on a relatively large knee
MRI dataset from the Osteoarthritis Initiative for cartilage segmentation.

2 Methods

In this section we (1) introduce the two components of our cascaded framework:
contextual input and additive output; (2) provide an analysis illuminating the
effect of additive outputs; and (3) describe the FCNs used to construct the
cascaded models in our experiments. Figure 1 illustrates the proposed approach.

Fig. 1. Schematic diagram of proposed contextual additive model.

2.1 Contextual Additive Networks

Context information is useful for image segmentation [7,10]. Inspired by the
auto-context algorithm [7], cascaded models have been proposed that input the
concatenation of an image and a segmentation (either the resulting labeling
itself or the class label probabilities) to subsequent models. The segmentation is
generated by a previous model with the image as its only input. Furthermore,
residual skip connections [11] are widely used for CNNs. These help the training
of deep networks and boost performance. Our contextual additive network is
inspired by both approaches. However, instead of using the residual connections
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across layers inside a neural network, we use them to connect the output of each
sub-model to generate the class probability. We use a sequence of such models
each also having access to the original input image (see Fig. 1).

Formally, our cascaded model Φ is based on a sequence of FCNs
{φ0, φ1, ..., φM}, whose parameters are Θ = {θ0,θ1, ...,θM} respectively. The
first FCN, φ0, with parameters θ0 takes an image x as input and predicts the
probability map of all class labels, P 0, by applying softmax to the output of the
FCN: P 0(x;θ0) = σ(φ0(x;θ0)), where σ is the softmax function. For an output
z ∈ R

C of C classes, the probability of class j is

σ(z)j =
ezj

∑C−1
l=0 ezl

, c ∈ {0, · · · , C − 1}. (1)

Subsequent FCNs use the image and the probability map (i.e., the contextual
input) of the previous FCN as input. However, instead of directly predicting the
input to a softmax function to obtain label probabilities these subsequent FCNs
(unlike previous work [8]) predict a residual between the previous prediction,
added to the output of the previous stage (i.e., the additive output) before the
softmax. The output of the contextual additive model after the M -th FCN is

PM (x;Θ) = σ(φ0(x;θ0) +
M∑

m=1

φm(x, Pm−1;θm)). (2)

Such a cascaded model can be trained by training each additive FCN via:

θ̂m = arg min
θm

L(Y, Pm(X; {θ̂0, · · · , θ̂m−1,θm})), (3)

where Y denotes the set of label images, X the set of images in the training
dataset, and L is the chosen loss function. Alternatively it can be trained end-
to-end by minimizing the sum of the losses for all stages of the model:

Θ̂ = {θ̂0, θ̂1, ..., θ̂M} = arg min
Θ

M∑

m=0

L(Y, Pm(X; {θ0, ...,θm})). (4)

Both training strategies work well in our experiments. When applying the trained
model one obtains the class label by selecting the most probable label:

ŷ(x; Θ̂) = arg max
j

PM
j (x; Θ̂), (5)

where ŷ denotes the label output for input image x and model parameters Θ̂.

2.2 Why an Additive Network is Beneficial

To give insight into the effect of adding model outputs before the softmax in the
cascade we approximate the loss function to first order. We use the cross-entropy
loss for multi-class segmentation which for a single model output, φ0, is

L0
CE = −

C−1∑

j=0

yj ln(σ(φ0
j )), (6)
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where j is the class index and C is the total number of classes. Considering
a cascaded model of two FCNs, we assume we trained the first FCN φ0 by
optimizing L0

CE . With the additive output of the second model, the loss becomes

L1
CE = −

C−1∑

j=0

yj ln(σ(φ0 + φ1)j). (7)

We can think of φ1 as a perturbation to φ0. Approximating the loss function (7)
around φ0 via a Taylor series expansion results in

L1
CE ≈ −

C−1∑

j=0

yj ln(σ(φ0
j )) −

C−1∑

j=0

yj

C−1∑

l=0

∂ ln σ(φ0)j
∂φ0

l

φ1
l

= L0
CE +

C−1∑

j=0

yj

C−1∑

l=0

ΔL1
CEj(φ

1
l |φ0), (8)

where L0
CE only depends on φ0 and can therefore be ignored for sequential

training of φ1; ΔL1
CEj(φ

1
l |φ0) captures how the loss depends on the output of

the second model for class l, φ1
l , for voxels annotated as class j:

ΔL1
CEj(φ

1
l |φ0) =

{−(1 − σ(φ0
j ))φ

1
j = −(1 − P 0

j )φ1
j , l = j

σ(φ0
l )φ

1
l = P 0

l φ1
l , l �= j

. (9)

Intuitively, when the first model performs well P 0
j is high and P 0

l,l �=j is low;
increasing φ1

j and decreasing φ1
l,l �=j is of low benefit to reduce the loss. When

the first model performs badly P 0
j is low and P 0

l,l �=j is high; increasing φ1
j and

decreasing φ1
l,l �=j is of high benefit. I.e., improving the prediction where the first

model perform badly is more beneficial than improving already good predictions.
In effect, the loss of the additive model naturally weighs each voxel so that it
focuses on problematic regions.

2.3 3D Fully Convolution Networks

Many FCN variants exist [3,12]. The U-Net [13] and the 3D U-Net [14] have been
popular to segment medical images. U-Nets add skip connections between the
encoder/decoder paths to retain high resolution features. We use the 3D U-Net
as our elementary FCN because of its good performance. The original 3D U-Net
is a dense architecture with four resolution steps in the encoder/decoder paths,
and 512 feature channels at the bottleneck, resulting in a total of ∼19 million
parameters. We also build three simpler U-Nets with fewer feature channels and
fewer resolution levels (Fig. 2). The smallest one has only 45,808 parameters.

3 Experiments

For each U-Net, we train a cascaded model of length M , where M is larger for
smaller U-Nets as the performance of a model with more complex U-Nets satu-
rates with smaller M . We explore results for end-to-end and sequential training.
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Fig. 2. U-Nets of the cascaded models (# of parameters in parentheses): original U-Net
(∼19M), U-Net-1 (∼1.1M), U-Net-2 (∼287K), U-Net-3 (∼46K)

We also use only contextual input and only additive output for our cascaded U-
Net-3 × 6 model to investigate the impact of our two key techniques. We study
memory use and runtime to explore our model’s segmentation efficiency.

3.1 Dataset and Preprocessing

We use knee MRIs from the Osteoarthritis Initiative consisting of 176 MR images
from 88 patients (2 longitudinal scans per patient). We split the dataset into a
training set of 60 patients (120 images), a validation set of 8 patients (16 images)
and a test set of 20 patients (40 images). All images are of size 384 × 384 × 160
and resolution 0.36 × 0.36 × 0.7mm3 per voxel. We normalize the intensities of
each image such that the 0.1 percentile and the 99.9 percentile are mapped to
{0, 1} and clamp values that are smaller to 0 and larger to 1 to avoid outliers.
We did not apply bias-field correction, because our exploratory experiments
indicated that bias-field correction did not substantially impact segmentation
results. For each volume, femoral and tibial cartilage are annotated on sagittal
slices. We transform the corresponding 2D polygon annotations to 3D label maps.

Table 1. Models’ parameter size and memory consumption in sequential training

Model Original U-Net U-Net-1 × 2 U-Net-2 × 3 U-Net-3 × 6

params # 19,065,888 2,294,486 862,185 275,538

Memory Train 11116 5836 3190 2434

(MB) Test 10312 7614 4044 2820
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3.2 Implementation Details

Due to the high memory demands of 3D convolutions, the full image volume and
its network outputs may not fit on a single GPU. Hence, we use overlapping tiles
as in the U-Net [13]. We choose image patches of size 128 × 128 × 32 considering
the nonuniform voxel resolution and that annotations were drawn sagittally.

During training, we randomly crop 3D patch pairs from image-label pairs.
To avoid class imbalances due to the high proportion of background voxels we
use three types of patches: any possible patch, patches with more than r1% of
femoral cartilage voxels, and patches with more that r2% tibial cartilage voxels.
Patches are randomly sampled at a ratio of 1 : 1 : 2 (r1 = 1, r2 = 2). We use the
Adam [15] optimizer with first moment β1 = 0.9, second moment β2 = 0.999,
and ε = 1e−10. The learning rate is initialized as 5e−4 and decays at half of
the total epochs and at the beginning of the last 50 epochs by 0.2. We train
the original U-Net and each sub-network in the sequentially trained cascaded
models with 600 epochs. When training a cascaded model of M U-Nets end-to-
end, 100 ∗ (M − 1) extra epochs were applied to assure convergence. Regarding
training time, the cascaded models take less time than the original U-Net (13 h)
except U-Net-3 × 6 (17 h for end-to-end training and 20 h for sequential training).
During training, we recorded a model’s Dice score on the validation dataset and
evaluate the model with the best validation score on the separate testing dataset.

Table 2. Segmentation evaluation of contextual additive models using different U-Nets.
E.g. U-Net-1 × 2 is a cascaded model of two U-Net-1. Results are for sequential training
(end-to-end results in parentheses). Our models can achieve performance on par with
the original U-Net with much fewer parameters and lower memory requirements.

Model Stage DSC (%) mIOU (%)

Original U-Net - 89.08 ± 2.41 86.89 ± 2.56

U-Net-1× 2 0 88.88 ± 2.61 (88.78 ± 2.60) 86.69 ± 2.76 (86.58 ± 2.74)

1 89.17 ± 2.55 (89.31 ± 2.39) 87.00 ± 2.71 (87.15 ± 2.55)

UNet-2× 3 0 88.13 ± 2.55 (88.31 ± 2.60) 85.88 ± 2.67 (86.07 ± 2.72)

1 88.72 ± 2.47 (88.79 ± 2.34) 86.50 ± 2.61 (86.58 ± 2.47)

2 88.74 ± 2.51 (89.14 ± 2.30) 86.53 ± 2.66 (86.96 ± 2.45)

UNet-3× 6 0 85.00 ± 3.13 (83.44 ± 3.00) 82.64 ± 3.10 (81.08 ± 2.90)

1 87.68 ± 2.66 (86.83 ± 2.68) 85.40 ± 2.77 (84.51 ± 2.73)

2 88.23 ± 2.50 (88.08 ± 2.57) 85.98 ± 2.62 (85.83 ± 2.68)

3 88.57 ± 2.45 (88.70 ± 2.45) 86.34 ± 2.59 (86.48 ± 2.59)

4 88.63 ± 2.42 (89.01 ± 2.35) 86.40 ± 2.57 (86.81 ± 2.50)

5 88.67 ± 2.42 (89.10 ± 2.35) 86.45 ± 2.56 (86.92 ± 2.50)

UNet-3× 6

(contextual input only)

5 88.23 ± 2.59 85.98 ± 2.71

UNet-3× 6

(additive output only)

5 87.22 ± 2.78 84.92 ± 2.87
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4 Results and Discussion

We quantitatively evaluate the segmentation results of each model and the out-
put at intermediate stages. Table 2 shows average Dice scores (DSC) and the
mean Intersection of Union (mIOU) of femoral and tibial cartilage and their
standard deviations. We also report the performance of U-Net-3× 6 models using
contextual input or additive output only. The number of model parameters and
memory consumption in sequential training (batch size 4) and testing (batch size
8) are given in Table 1. Table 3 shows segmentation results at different stages of
the U-Net-3 × 6 cascade.

We observe that our contextual additive networks are more efficient as they
use significantly fewer parameters while achieving similar or better performance
than using a single more complex U-Net. The original U-Net has for example
almost two orders of magnitude more parameters than the U-Net-3× 6 while
resulting in very similar accuracy. We also observe that both the contextual
inputs and the additive output helps boost the performance in cascaded U-Nets.

Table 3. Segmentation results of end-to-end trained U-Net-3 × 6. Rows are Sagittal,
Axial, Coronal views and 3D rendering. Red and green labels represent femoral and
tibial cartilage respectively.

Experts
annotations

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

5 Conclusion

We developed a framework of cascaded FCNs with contextual inputs and additive
output to boost the performance of 3D semantic segmentation. Our theoretical
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analysis shows that the additive output focuses the additive model on regions
where previous output results were relatively poor. Experiments on a large 3D
MRI knee dataset demonstrated that our framework can refine the results of a
single U-Net. Importantly, we showed that a cascaded model of simple U-Nets
can match the performance of a complex U-Net, while providing better efficiency
in terms of using fewer parameters and requiring less memory. Our approach
may provide an alternative to improve FCNs for segmentation. Future work will
investigate different FCNs as elements of the cascade, e.g. networks with inputs
of multiple resolutions, and evaluate performance on different datasets.
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