
A Deep Learning Approach Based on CSP
for EEG Analysis

Wenchao Huang(&), Jinchuang Zhao, and Wenli Fu

College of Computer and Electronics Information, Guangxi University, Nanning
530004, China

wenchao_h@outlook.com, {zhaojch,fuwenli}@gxu.edu.cn

Abstract. Deep learning approaches have been used successfully in computer
vision, natural language processing and speech processing. However, the
number of studies that employ deep learning on brain-computer interface
(BCI) based on electroencephalography (EEG) is very limited. In this paper, we
present a deep learning approach for motor imagery (MI) EEG signal classifi-
cation. We perform spatial projection using common spatial pattern (CSP) for
the EEG signal and then temporal projection is applied to the spatially filtered
signal. The signal is next fed to a single-layer neural network for classification.
We apply backpropagation (BP) algorithm to fine-tune the parameters of the
approach. The effectiveness of the proposed approach has been evaluated using
datasets of BCI competition III and BCI competition IV.
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1 Introduction

Brain-computer interface (BCI) is a communication system that is established between
the human brain and computers or external devices without relying on the regular brain
peripheral nerve and muscle systems [1]. BCI system acquire human brain EEG sig-
nals, extract features, classify EEG and translate EEG into machine-readable control
commands. The main goal of BCI system is to strengthen the ability of disabled
persons affected by a number of motor disabilities. The application of BCI in the
medical field mainly includes sensory recovery, cognitive recovery, rehabilitation
treatment, and brain-control wheelchairs [2]. In non-medical areas, BCI can be applied
to new types of entertainment games, car driving, robot replacements, lie detectors [3],
etc. In addition, in the field of aviation and military industry, BCI also has a wide range
of applications.

MI-BCI is the BCI application based on MI-EEG, and it is one of the main
directions of brain-computer interface research. Many successful MI-BCI relies on
subjects learning to control specific EEG rhythms that manifest as EEG potentials
oscillating at a particular frequency. The EEG rhythms related to motor imagery tasks
consist of mu (8–13 Hz) rhythm and beta (13–30 Hz) rhythm. The energy in mu band
observed in motor cortex of the brain decreases by performing an MI task [4]. This
decrease is called event related desynchronization (ERD). An MI task also causes an
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energy increase in the beta band that is called event related synchronization (ERS) [5].
For different MI tasks, the brain motor cortex produces discriminative ERD/ERS.
Features are extracted by analysing ERD/ERS, and then a classification algorithm is
adopted to construct a MI-BCI. Two main techniques for MI-EEG analysis are feature
extraction and classification algorithms. Several feature extraction techniques such as
power spectral density (PSD), common spatial pattern (CSP) [6–9], autoregressive
(AR) model, adoptive autoregressive (AAR) model, independent components analysis
(ICA) and wavelet transform [10, 11] have been studied. Classifiers such as support
vector machine (SVM) [12], k-nearest neighbors (KNN) [13, 14], random forest
(RF) [15], linear discriminant analysis (LDA) [16], etc. have been explored for clas-
sification of MI-EEG signals.

In recent years, deep learning’s revolutionary advances in audio and visual signals
recognition have gained significant attentions. Some recent deep learning based EEG
classification approaches have enhanced the recognition accuracy. In a study by An
et al., a deep belief network (DBN) model was applied for two class MI classification
and DBN was shown more successful than the SVM method [17]. Yousef et al. applied
convolutional neural networks (CNN) and stacked autoencoders (SAE) to classify EEG
Motor Imagery signals [18, 19]. Schirrmeister proposed a convolutional neural network
(deep ConvNets) for end to end EEG analysis. Their study shows how to design and
train ConvNets to decode task-related information from the raw EEG without hand-
crafted features and highlights the potential of deep ConvNets combined with advanced
visualization techniques for EEG based brain mapping [20].

In this paper, we propose a framework based on CSP and backpropagation algo-
rithm for MI-EEG analysis. In order to evaluate the proposed framework, we trained
and tested with BCI competition II dataset III and BCI competition IV dataset 2a. The
remainder of this paper is organized as follows. Section 2 provides a description of the
proposed framework. Section 3 describes the experimental studies and results on the
evaluation data of the BCI competition II datasets III and BCI competition IV datasets
2a. Finally, Sect. 4 concludes this paper with the results.

2 Methods

The structure of the proposed framework is shown in Fig. 1. The proposed framework
consists of 4 stages. The first stage is a band-pass filter for raw EEG data. The second
stage performs spatial filtering using CSP algorithm. The third stage consists of the
temporal projection of the spatial filtered signal. The last stage is a single-layer neural
network that is implemented as a classification layer. The following sections explain
the different stages of the proposed framework in detail.

2.1 Band-Pass Filtering

As described in Sect. 1, there are ERS/ERD when human perform MI tasks. In order to
extract the EEG signals in mu band and beta band, the raw EEG data is first filtered by
a band-pass filter that covers 8–30 Hz.
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2.2 CSP Algorithm

The CSP algorithm is highly successful in calculating spatial filters for detecting
ERD/ERS. The main idea is to use a linear transform to project the multi-channel EEG
data into low-dimensional spatial subspace with a projection matrix, of which each row
consists of weights for channels [21]. This transformation can maximize the variance of
two-class signal matrices. The CSP algorithm perform spatial filtering using

Zi ¼ WT
cspEi ð1Þ

where Ei is an n� t matrix representing the raw EEG measurement data of the i th trial,
n is the number of channels, t is the number of measurement samples per channel. Wcsp

denotes the CSP projection matrix, T denotes transpose operator. Z denotes the spa-
tially filtered signal. The CSP matrix can be computed by solving the eigenvalue
decomposition problem

S1Wcsp ¼ ðS1 þ S2ÞWcspD ð2Þ

where S1 and S2 are estimates of the covariance matrices of the band-pass filtered EEG
measurements of the respective motor imagery action, D is the diagonal matrix that
contains the eigenvalues of S1.

However, only a small number m of the spatial filtered signal is generally used as
features. We perform another transform to get the spatially filtered signal. It is given by

Zi ¼ Wcsp
T
Ei ð3Þ

where Wcsp represents the first m and the last m columns of Wcsp, the spatial filtered
signal Z is a 2m� t matrix.

Fig. 1. Diagram of the proposed framework
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2.3 Joint Optimization Using Backpropagation

Mathematically, the 3th stage and the 4th stage can be described as follows. Given the
spatial filtered signal Z, the temporal projection matrix V , the classifier weights Wc and
bias b, we have

S ¼ WT
c logðZ2VÞþ b ð4Þ

where S denotes the input that is a vector containing class scores and will be plugged
into an activation function. The output of the framework is given by

y ¼ f Sð Þ ð5Þ

where y is a vector of probability for the classes and f �ð Þ is the activation function that
is the softmax function. The softmax function (sofmax regression) is a generalization of
logistic regression to the case where we want to handle multiple classes. The softmax
output is given by

yk ¼ eSk
P

j e
Sj

ð6Þ

where Sk is an element for a certain class k in all j classes. The cost function is the
cross-entropy cost function, which is

E ¼ � logðpyk Þ ð7Þ

The free parameters of the 3th stage and the 4th stage are the temporal projection
matrix V , the classifier weights Wc and the bias b. The parameters are learned by using
back-propagation algorithm. In this method, the labeled training set is fed to the net-
work and the error E(cost function) is computed. Then the model parameter can be
updated using gradient descent method. The error can be minimized by changing
network parameters as shown as follows

V ¼ V � g
@E
@V

ð8Þ

Wc ¼ Wc � g
@E
@Wc

ð9Þ

b ¼ b� g
@E
@b

ð10Þ

where g denotes the learning rate of the algorithm. V is initialized to a matrix of all
ones, Wc is randomly initialized from a Gaussian distribution. Finally, the trained
framework is used for classification of the new samples in the test set.
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3 Experiments with BCI Competition Datasets

In this section, we apply the proposed framework to the BCI competition datasets, and
the results of the proposed approach on these datasets are presented.

3.1 BCI Competition II, Dataset III

The first dataset is dataset III from BCI competition II. The dataset includes MI task
experiments for right hand and left hand movements. EEG signals are recorded at C3,
Cz and C4 channels. During acquisition of the EEG signals, at t = 2 s an acoustic
stimulus indicating the beginning of the trial was used and a cross ‘+’ was displayed for
1 s. Then, at t = 3 s, the subject was asked to perform the related MI task by displaying
an arrow (left or right). There were 280 trials in the dataset, 140 trials for training and
another 140 trials for test.

For each EEG trial, we extracted the time interval between 0.5 s to 3.5 s after the
cue was displayed. To evaluate our method on the dataset, we used the network shown
in Fig. 1 and described in Sect. 2, which consists of a band-pass filter, CSP spatial
projection, temporal projection and a single-layer neural network. The framework was
trained with 140 trials in the training set and tested on 140 trials in the test set.
Stochastic gradient descent (SGD) was used to update the parameters and minimize the
error E. For each training epoch, the mini-batch was set to be 1/2 of the training data
randomly.

The results of BCI competition II dataset III are shown in Table 1. When learning
rate g was fixed to be 0.03, we obtained the best results. The accuracy performance of
our method was obtained as 90.0%. The accuracy of the winner algorithm of the
competition is 89.3%. We compared our results to some study (CNN and CNN-SAE)
where deep learning network is used [18, 19]. The results of CNN and CNN-SAE are
90.0% and 89.3% respectively. The CSP-LR method is the normal method without
using deep learning methods for MI-EEG analysis, which use CSP for feature
extraction and logistic regression algorithm for classification. We also compared our
results to the CSP-LR method. The CSP-LR method got an accuracy of 88.9%. The
kappa values of those methods are also in the Table 1. The kappa value is a measure for
classification performance removing the effect of accuracy of random classification.
Kappa is calculated as

kappa ¼ acc� 1=N
1� 1=N

ð11Þ

Table 1. The accuracy (%) and kappa results of BCI competition II dataset III

Method Proposed method Winner CNN CNN-SAE CSP-LR

Accuracy % 90.0 89.3 89.3 90.0 88.6
Kappa 0.800 0.786 0.786 0.800 0.772
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where N denotes the number of classes. In this dataset N is 2. As described in Table 1,
the accuracy of the proposed method is equal to CNN-SAE, and is better than the
winner of competition, CNN method and CSP-LR.

3.2 BCI Competition IV, Dataset 2a

BCI competition IV dataset 2a comprised 4 classes of motor imagery EEG measure-
ments from 9 subjects, namely, left hand, right hand, feet, and tongue. Two sessions,
one for training and the other for evaluation, were recorded from each subject. Each
session comprised 288 trials of data recorded with 22 EEG channels and 3 monopolar
electrooculogram (EOG) channels. Each trial starts with a short acoustic stimulus and a
fixation cross. Then, at t = 3 s an arrow indicates the MI task. The arrow is displayed
for 1.25 s. Then the subjects have 4 s to imagine the task.

There are 4 classes in dataset 2a that is different from BCI competition II dataset III.
When performing the spatial projection, we use OVR-CSP [22] to get the spatial
filtered signals. The architecture of framework described in Sect. 2 can be changed as
Fig. 2. The number of temporal projection matrices needed to be fine-tuned increase to
4. The 4 temporal projection matrices are initialized to matrices of all ones and will be
updated together using back propagation algorithm.

For each EEG trial, we extracted the time interval between 1 s to 5 s after the cue
was displayed. The framework was trained with training data and tested on test data.
SGD was used to update the parameters. The Mini-batch was set to be 1/4 of the
training data randomly.

The accuracy results of the proposed method and CSP-LR are shown in Table 2.
Kappa values of the proposed method and CSP-LR are compared to FBCSP (winner
algorithm of competition) [9] in Table 3. With the deep learning method, the proposed
method obtained higher accuracies and better kappa values than CSP-LR method for all
subjects. For subject 1, subject 2, subject 3, subject 8 and subject 9, our approach has

Fig. 2. Diagram of the proposed framework based on OVR-CSP
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better kappa values than FBCSP. For subject 4, subject 5, subject 6 and subject 7, our
approach has worse kappa values. The average kappa value of our approach is 0.583,
which is higher than FBCSP (0.569).

4 Conclusion

In this study, we propose a deep learning approach for MI-EEG analysis. We designed
a framework by combining backpropagation algorithm and CSP. We use a band-pass
filter for processing the raw EEG data. And CSP algorithm is used for spatial filtering.
Then we perform temporal projection and obtain the features which are fed to a single-
layer neural network for classification. The free parameters of the framework can be
fine-tuned by applying the backpropagation algorithm for the best classification
accuracy.

Table 2. The accuracy (%) results for the proposed method and CSP-LR

Subject Accuracy %
Proposed method CSP-LR

1 78.1 73.3
2 58.4 50.7
3 81.2 59.0
4 60.1 45.8
5 53.0 47.2
6 42.3 37.2
7 80.0 40.3
8 84.7 64.3
9 81.2 64.9
Average 68.7 53.6

Table 3. The kappa results for the proposed method, FBCSP and CSP-LR

Subject Kappa
Proposed method FBCSP CSP-LR

1 0.708 0.676 0.644
2 0.445 0.417 0.343
3 0.749 0.745 0.453
4 0.468 0.481 0.277
5 0.373 0.398 0.296
6 0.231 0.273 0.163
7 0.733 0.773 0.204
8 0.796 0.755 0.524
9 0.749 0.606 0.532
Average 0.583 0.569 0.382

68 W. Huang et al.



We apply the proposed framework to the BCI competition datasets. Dataset III
from BCI competition II and dataset 2a from BCI competition IV were used in this
study. The accuracy result of our method on dataset III is 90.0% that is equal to CNN-
SAE method. And it is higher than the winner algorithm of competition II and CNN
method. On dataset 2a from BCI competition IV, our method obtained average kappa
value of 0.583 which is better than FBCSP. Furthermore, on both datasets our method
outperformed CSP-LR method that is not using deep learning methods.

Though deep learning methods have achieved great development in computer
vision, natural language processing and speech processing, its application in EEG-
based BCI is still rare. Our results show that deep learning methods have great potential
to be a powerful tool for EEG analysis and EEG-BCI. We believe that the number of
further BCI studies using deep learning methods will increase rapidly.
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