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Abstract. In this paper, we describe a method to construct a 3D
atlas from fetal brain ultrasound (US) volumes. A multi-channel group-
wise Demons registration is proposed to simultaneously register a set of
images from a population to a common reference space, thereby repre-
senting the population average. Similar to the standard Demons formu-
lation, our approach takes as input an intensity image, but with an addi-
tional channel which contains phase-based features extracted from the
intensity channel. The proposed multi-channel atlas construction method
is evaluated using a groupwise Dice overlap, and is shown to outperform
standard (single-channel) groupwise diffeomorphic Demons registration.
This method is then used to construct an atlas from US brain volumes
collected from a population of 39 healthy fetal subjects at 23 gestational
weeks. The resulting atlas manifests high structural overlap, and corre-
spondence between the US-based and an age-matched fetal MRI-based
atlas is observed.

1 Introduction

Tracking fetal growth and developmental progression is paramount in obstet-
ric care. The fetal brain undergoes a predictable sequence of structural changes
across gestation: from a smooth surface, to progressively bearing more folds [1].
This process follows a precise schedule, and delays are indicative of impaired
brain maturation. Thus, the presence of a cerebral abnormality may be mani-
fested by structural deviations from the norm. In order to detect such develop-
mental deviations, an individual’s image can be compared against an atlas that
is representative of the healthy population. Atlases of the developing brain have
been developed from magnetic resonance (MR) image data collected from infant
and fetal subjects (reviewed in [2]). These atlases have provided a representation
of brain anatomy in the womb, and have facilitated tissue segmentation, thereby
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enabling studies of structural growth and aiding the detection (or characteri-
zation) of fetal pathologies [2]. However, given that ultrasound (US) imaging
forms one of the first steps in perinatal monitoring, there is still a need to create
an ultrasound-specific atlas for use in routine care. This work presents a tool to
automatically generate an atlas from 3D US images of the fetal brain.

The standard approach to construct an anatomical atlas is to perform one
of state-of-the-art pairwise deformable registration algorithms [3] between the
chosen (reference) volume and the remaining volumes from a data set. Such an
approach is simple and easily scalable to large data sets, however it introduces
a bias to registration results due to the selection of reference volume. That is,
if the selected reference volume is an outlier then all registrations will estimate
implausible transformations. Additionally, the transformation estimated using
a pairwise approach accumulates inverse consistency and transitivity errors [4],
which could be propagated to any subsequent analysis. Different approaches have
been proposed to reduce transformation errors when building atlases, including
statistical deformation models [5], linear [6] or geodesic [7,8] averaging of the
transformations and intensity to produce the atlases. Approaches with simulta-
neous registration (i.e. groupwise registration) of all volumes in a dataset have
been shown to reduce the bias introduced by selection of a fixed reference volume,
and errors in the estimated displacement fields.

Developing intensity-based methods for registration of ultrasound images is
challenging due to strong intensity inhomogeneities within tissues, and the pres-
ence of shadows, which cause partial, low-contrast boundaries. Local phase [9]
and feature asymmetry (derived from the monogenic signal [10]) extract contrast-
invariant structural information, and have been shown to improve analysis of US
images in several tasks. Specifically, feature asymmetry (FA) has the potential
to enhance tissue boundaries, and as such, has been extensively used to process
fetal ultrasound data, where there are large structural changes (e.g. [11,12]).
A hybrid intensity and local phase representation of US images has been applied
to tumour tracking in 2D liver US [13], showing overall improved registration
accuracy. Realizing the potential of FA to enhance and sharpen the sonographic
landmarks necessary for accurate registration, this work explores its inclusion as
additional image channels for US atlas construction.

In this paper, we present a framework to construct the first 3D atlas of the
fetal brain using non-rigid groupwise registration of US images. Our framework
extends a standard groupwise registration [4] to its multi-channel counterpart
using a composite image representation to improve the registration of tissue
interfaces in US data. The proposed multi-channel image representation com-
prises of ultrasound intensities and features extracted using different FA scales,
thereby representing boundaries of different sizes in a multiscale manner. The
presented evaluation shows that the presented method is capable of constructing
an atlas from fetal brain US data, and at the same time, the performed quan-
titative analysis shows that our method outperforms standard intensity-based,
and single channel image registration methods.
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2 Materials and Methods

2.1 Fetal Dataset and Preprocessing

The fetal US images used in this work comprised of 39 volumes (247×190×179
voxels) with known age of 23 gestational weeks (GW). The sonographic volumes
of the fetal head were obtained from the INTERGROWTH-21st study database
[14], which were collected using a Philips HD9 curvilinear probe at a 2–5 MHz
wave frequency. After alignment [15], all volumes were resampled to an isotropic
voxel size (0.6 × 0.6 × 0.6 mm) and resized to 160 × 160 × 160 voxels.

2.2 Atlas Construction

Given a set of M images, the goal of atlas construction is to find a set of trans-
formations T , each of which maps its corresponding image Im to a common
reference space: T : {TmR : Im �→ IR,m = 1, . . . , M}. This typically comprises
of two steps: a global transformation to correct for size and growth differences,
followed by a non-rigid registration to account for local morphological differences.

Sonographic scans of the fetal head were first rigidly aligned using the method
proposed in [15]. Briefly, a slice-wise classifier segmented the skull boundaries and
predicted the relative position of the slice in the brain volume. This information
was then combined to estimate a similarity transformation modelling 9 degrees of
freedom (namely, rotation, translation, and isotropic scaling) to linearly register
all volumes to a standard (atlas) space. One of the challenges of processing
fetal brain US is that the ultrasound signal is attenuated by the cranial bones
in its path, and the concave shape also refracts it and creates reverberation
artifacts. This affects the visibility of anatomical boundaries, particularly in the
cerebral hemisphere proximal to the US probe. Since only one of the hemispheres
has clearly visible structures, this hemisphere is mirrored across the midsagittal
plane. This generates a complete representation of the brain, thereby making an
assumption of brain symmetry, for simplicity [16].

The non-rigid image registration used in this work, is built on the groupwise
deformable registration proposed in [4,17]. The implicit reference groupwise reg-
istration reduces bias introduced by selection of a reference volume by jointly
estimating the transformation between all volumes in the dataset to an unknown
reference volume. This process is defined as the following optimization problem:

arg min
u

⎛
⎝

M∑
m

M∑
n,n �=m

∫

Ω

Sim (Im(TmR(x)), In(T nR(x))) dx + (1)

α

M∑
m

∫

Ω

Reg(umR(x))dx

)
(2)

where Sim and Reg denote the similarity measure and regularisation term,
respectively, α is the weighting parameter, TmR = x + umR(x) (or T nR =
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x+unR(x)) is the transformation from volume Im (or In) to the implicit refer-
ence volume IR at spatial position x. The umR (or unR) represents a subsequent
displacement field, Ω is the volume domain, and M is the number of volumes
to be registered. The implicit reference volume is iteratively updated based on
all the volumes deformed during the displacement field estimation process. In
this work, we choose the diffeomorphic Demons framework [18], where optimi-
sation iteratively alternates between minimising the energy related to the sim-
ilarity measure Sim and the regularization term Reg performed via Gaussian
smoothing of the estimated displacement fields. In order to establish anatomi-
cally meaningful correspondences between brain US volumes, we replace state-
of-the-art intensity differences used in the classic Demons by a multi-channel
feature-based representation of the US volumes. The implementation details for
efficient Demons-like implicit reference groupwise registration can be found in
[19].

2.3 Feature Extraction

The monogenic signal uses the Riesz transform to generate a representation of
an image in the frequency domain [20]. By applying an appropriately selected
bandpass filter (f{o,e}), the signal can be decomposed into local structural (phase
and orientation) and energetic (amplitude) information. The phase component
extracts contrast-invariant, structural information, which is particularly useful in
recovering feature asymmetry (FA) [21]. FA is a measure of the extent to which
a structure around an image voxel is locally asymmetric, thus representing a
step-edge [10,21]. The FA edge image Î of an input image I is recovered as:

Î =
�|fo,λ(I)| − |fe,λ(I)| − t�√

fo,λ(I)2 + fe,λ(I)2 + ε
(3)

where λ represents the filter scale, fo and fe represent the odd and even parts of
the signal, t is a threshold that controls the sensitivity of the response, �·� sets
negative values to zero, and ε is a filter regularization parameter which prevents
division by zero.

FA allows edge features to be obtained at different centre-wavelengths, λ.
The centre frequency is equivalent to the scale of the bandpass filter f{o,e},λ

(i.e. size of structures of interest) used to the calculate the monogenic signal.
In fetal brain US images, the anatomical boundaries appear as step-edges and
ridge-like structures, which are best extracted with a log-Gabor filter [11]. Given
an US image, I, a corresponding FA edge image Î is defined to highlight struc-
tural boundaries [10,21]. An FA image typically detects thick edges which are
thinned by applying non-maximum suppression for improved boundary local-
ization. Here, we explore the effect of supplementary structural information for
atlas construction by varying the centre frequency at which the monogenic signal
was recovered from the images, λ = [0.025, 0.425] (Fig. 1). The other parameters
were empirically set to t = 0.5 and ε = 10−6.



80 A. I. L. Namburete et al.

Skull

Th SylvF

CentSCingS

λ = 0.075 λ = 0.125 λ = 0.275

Fig. 1. Schematic of a coronal view of the fetal brain at 23 GW, and a typical US scan.
Feature asymmetry edge images are shown at varying centre-frequency wavelengths,
λ = {0.075, 0.125, 0.275}, overlaid in yellow. (Color figure online)

2.4 Evaluation Metrics

Ten brain volumes were linearly registered using [15] and anatomical regions were
manually segmented and verified by an expert with 10 years’ experience and a
senior sonographer. The segmented regions of interest (Vk) included the brain
stem (BS), cavum septum pellucidum (CSP), thalamus (TH), and white matter
(WM) (Fig. 2c). In order to evaluate registration performance, we compute the
average relative overlap (ARO) for each of the K = 4 regions as follows [4]:

ARO =
1

N(N − 1)

N∑
j=1,
j �=i

N∑
i=1

∑
K Vk

i ∩ Vk
j∑

K Vk
i ∪ Vk

j

(4)

where Vk
i = Vk

i (TiR(I)), K is the number structures, and N is the number of
annotated volumes.

All experiments were performed on an Intel i7 2.80 GHz quad-core machine
(32 GB RAM) with a C++ implementation of the diffeomorphic Demons algo-
rithm.

3 Results and Discussion

3.1 Registration of Anatomical Structures

In the first experiment, we explored different formulations of the groupwise reg-
istration algorithm to construct an atlas that maximizes anatomical correspon-
dence between the neurosonographic images. By varying the diffusion parameter
of the Demons-like forces (σd = [0.25, 5.0]), we find that the best performance is
achieved with σd = 1.0 (ARO > 0.868 for WM, Fig. 2a), and gradually decreases
as σd increases. This behaviour was observed regardless of input: single- or multi-
channel.

Furthermore, we explored the effect of FA wavelength (scale) selection by vary-
ing λ from 0.025 to 0.425. Figure 2b shows the ARO averaged across all four struc-
tures. The groupwise approach outperformed the linearly aligned data, regardless
of input. However, the multi-channel Demons (intensity + sFA) outperformed
single-channel Demons (intensity) only for scales λ = {0.075, 0.125, 0.175}.
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For further comparison, we explored the performance of a multi-channel Demons
with multi-scale feature extraction by combining the features from the best FA
scales (λ = 0.075, 0.125, 0.175) into the second input channel. This yielded the
highest structural overlap (ARO = 0.8029 ± 0.049) and was selected as the best
method for atlas construction.

Figure 2c shows the result of applying the groupwise registration to the set of
ten volumes for which corresponding segmentations were available. The atlases
were constructed by averaging the images after affine registration, and then fur-
ther transformed by the groupwise registration. There is high consensus between
the structures, as observed in the probability maps, which is corroborated by the
groupwise ARO of the resulting atlas (Table 1).

To further examine the anatomical agreement recovered by the groupwise
registration algorithm, we compared the average segmentation maps obtained
by transforming the annotated images, with a segmentation of the resulting
groupwise atlas. High volumetric overlap was also observed for all four structures
(mean ARO = 0.8580 ± 0.036).

Fig. 2. (a) Registration regularization parameter (σd) versus average relative overlap
(ARO). (b) Different atlas construction methods plotted against ARO. (c) Resulting
US atlas constructed using intensity and multi-scale FA from n = 10 volumes for which
segmentations were available. Denser colour signifies higher overlap.
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3.2 Construction of Population Brain Atlas

In the second experiment, we applied the proposed multi-channel groupwise reg-
istration algorithm to 39 brain volumes to construct an atlas. Figure 3 shows
atlases constructed by averaging the images after the affine registration [15],
and after non-rigid registration with either a single (intensity) channel, or multi-
ple channels (i.e. intensity and feature asymmetry). It is evident that the atlases
constructed with groupwise registration had higher anatomical definition, and
more distinct boundaries. Structural clarity was even higher in the atlas con-
structed with multi-channel inputs.

In order to visualize the structural variation within the healthy fetal cohort
at 23 GW, we performed principal component analysis (PCA) of the deforma-
tion fields estimated from the 39 volumes. Figure 5 demonstrates the first four

Fig. 3. Visual comparison between fetal brain atlases constructed from n = 39 US
volumes at 23 GW using affine (first column), intensity-based (second column), and
multi-channel groupwise methods (third column). Comparison to MRI-based fetal atlas
at 23 GW shows the presence of similar structures in both modalities [22] (yellow
arrows), but some structures are better observed in US images (red arrows). (Color
figure online)

Fig. 4. Volumetric US atlas with superimposed segmentation of four structures from
a fetal MR atlas at 23 GW (obtained from Gholipour et al. [22]).
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Fig. 5. Principal component analysis (PCA) result display the mean brain ±3 stan-
dard deviations (i.e. μ ± 3σ) for the first four components. All modes show realistic
representations of the brain.

components, altogether explaining 65.6% of the variation at this gestational age.
PC1, PC2, and PC4 display variations in anatomical shape and global eccen-
tricity of the brain. Small changes in ventricular shape are particularly observed
around the posterior lateral ventricles and the cortical plate in PC1. Nonethe-
less, all modes of variation demonstrate realistic representations of the brain at
23 GW.

3.3 Comparison to Existing Fetal Atlas

In order to assess the quality of the resulting atlas, Fig. 4 compares our US-
specific atlas with a MRI-based fetal template at 23 GW generated by Gholipour
et al. [22]. The contours of the latter are superimposed on the US-based atlas
constructed from n = 39 volumes. Here, we can visually determine that despite
there not being a direct intensity mapping between the two, there is a good
match between the shape and location of the structures in both modalities at
this gestational week. This illustrates the complementarity between the modal-
ities, and presents opportunities to transfer anatomical insights from one to the
other, and the possibility to facilitate analysis of fetal brain US with information
contained within MRI models of development (e.g. [22]). The fact that structures
such as the basal ganglia are better visible in the US-based atlas (Fig. 3) also
presents new opportunities for use of neurosonographic data to study structural
development.
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Table 1. Average relative overlap for all four structures on 10 annotated volumes.
Intensity: single-channel Demons. Intensity+sFA: multi-channel, single-scale demons
(λ = 0.075). Intensity+mFA: multi-channel, multi-scale Demons with FA scales λ =
{0.075, 0.125, 0.175}.

Method Structural ARO (D̄k) Mean ARO

WM TH CSP BS

Linear only [15] 0.8174 0.6467 0.6379 0.6412 0.6858 ± 0.076

Intensity 0.8680 0.7383 0.7289 0.7652 0.7751 ± 0.055

Intensity + sFA 0.8829 0.7672 0.7806 0.7771 0.8019 ± 0.047

Intensity + mFA 0.8873 0.7680 0.7824 0.7738 0.8029± 0.049

Structural volume (cm3) 37.64 1.954 0.449 1.233 –

4 Conclusion

In this paper, we present the first fetal brain atlas constructed from US data.
The proposed multi-channel Demons formulation takes as input an image with
intensity and feature-enhanced channels. It was shown to outperform a single-
channel Demons registration approach, generating high structural overlap in the
resulting atlas. Comparison with an age-matched MR atlas demonstrated simi-
larities in the shape and presence of key anatomies in both imaging modalities,
but also revealed new structures that are better observed in the US atlas. Given
the formulation of the proposed method, it is expected that it should extend to
a broader gestational age range.
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