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Abstract. Adipose tissue mass has been shown to have a strong cor-
relation with fetal nourishment, which has consequences on health in
infancy and later life. In rural areas of developing nations, ultrasound
has the potential to be the key imaging modality due to its portability
and cost. However, many ultrasound image analysis algorithms are not
compatibly portable, with many taking several minutes to compute on
modern CPUs.

The contributions of this work are threefold. Firstly, by adapting
the popular U-Net, we show that CNNs can achieve excellent results
in fetal adipose segmentation from ultrasound images. We then propose
a reduced model, U-Ception, facilitating deployment of the algorithm on
mobile devices. The U-Ception network provides a 98.4% reduction in
model size for a 0.6% reduction in segmentation accuracy (mean Dice
coefficient). We also demonstrate the clinical applicability of the work,
showing that CNNs can be used to predict a trend between gestational
age and adipose area.

1 Introduction

Ultrasound has the potential to be the key imaging modality in rural areas
of developing nations, due to its low cost and portability. To complement this
portability, there is a need for image analysis tools which are similarly mobile,
allowing them to be implemented alongside the imaging itself in remote locations.
The most practical mode of deployment would be an application on an iOS or
Android device, such as a tablet or mobile phone, which typically come with
hardware limitations such as smaller RAM and less powerful GPUs.

However, current ultrasound analysis techniques are not compatibly efficient,
with many taking several minutes to run on modern CPUs [1]. Furthermore, most
convolutional neural networks (CNNs) - which are currently state-of-the-art in
image analysis tasks - require too much memory to deploy on a mobile phone
or tablet. In response to this, we propose a novel CNN architecture, U-Ception,
which uses depth-wise separable convolutions to analyze ultrasound images in a
computationally efficient manner.
c© Springer Nature Switzerland AG 2018
A. Melbourne and R. Licandro et al. (Eds.): DATRA/PIPPI 2018, LNCS 11076, pp. 55–65, 2018.
https://doi.org/10.1007/978-3-030-00807-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00807-9_6&domain=pdf


56 S. Vaze and A. I. L. Namburete

Fig. 1. Cross-sectional image of fetal a arm (left), with segmentation (right). Segmenta-
tion shows adipose tissue (of interest, blue), muscle (red), and humerus (green). (Color
figure online)

The target application is the segmentation of fetal adipose tissue, as shown
in Fig. 1. It has been shown that adipose mass has a ‘pronounced sensitivity’ to
maternal - and thus fetal - nutritional state [2]. This is of special importance in
the developing world, where 152 of the world’s 155 million stunted under-five
year olds reside [3]. Thus, the observation and control of fetal nourishment is
crucial: developmentally, the most important time for proper nourishment is in
the first 1000 days (from conception until the 2nd birthday), and catch-up growth
in later childhood is ‘minimal’ [4].

This work presents the U-Ception network: a CNN designed for segmentation
of adipose tissue in fetal ultrasound data. Firstly, in Sect. 2, this work summarizes
previous efforts at fetal segmentation, and a number of popular methods which
reduce neural network size. Section 3 will then describe the CNNs proposed for
this segmentation challenge. The first - an adaptation of the popular ‘U-Net’ [5] -
provides a baseline performance against which the reduced U-Ception architec-
ture can be compared. Section 4 describes the experimental set-up, and Sect. 5
outlines our results, showing the similarity in performance between the adapted
U-Net and U-Ception models.

2 Previous Work

The current state-of-the-art in fetal adipose segmentation is the feature asymme-
try approach proposed by Rueda et al. [6]. Feature asymmetry is a phase-based
method, which uses points of phase congruency at specific frequencies to build an
edge map which is robust to changes in contrast. Other approaches to fetal ultra-
sound segmentation include the use of active contours [7,8], Hough transforms
[9] and multi-level thresholding [1].

However, for most biomedical image segmentation, the most prevalent algo-
rithms are convolutional neural networks (CNNs). An important CNN is the
‘U-Net’ [5], which has been used extensively in the biomedical field [10,11]. The
network won the ISBI neuronal segmentation challenge in 2015 by a significant
margin - despite a small training set of 30 images - by performing strong data
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augmentation. It is adapted in this work: first to form a baseline for the applica-
tion of CNNs to fetal adipose segmentation, and then as a guide for the proposed
CNN with a smaller ‘size’.

Network size is defined as its memory footprint, which is directly proportional
to the number of its parameters, and is the main bottleneck in the application of
CNNs on mobile devices. Mobile devices typically come with between 2 GB and
4 GB of RAM, with many modern networks (especially segmentation architec-
tures) having hundreds of millions of parameters, with sizes nearing a gigabyte.

Numerous efforts have been made to reduce neural network size by efficiently
storing these parameters. Wu et al. quantized the weights of the network, learn-
ing an optimal quantization codebook using K-Means clustering [12]. Huffman
coding (a lossless method of compressing data) has also been used to efficiently
store network weights [13].

Another method of building a smaller network is distillation [14]. Distillation
is the process of using a larger network to train a smaller network, passing on
the generalization ability of the large network.

A class of techniques seeks to factorize the convolutions in the networks,
breaking them down into a number of steps. One example of this was suggested
by Jin et al., which, instead of convolving feature maps with 3D tensors, decom-
poses the process into convolutions with three one-dimensional vectors [15].

This work uses depth-wise separable convolutions [16], which have been shown
to provide high accuracy results in the ‘Xception’ classification network [17]. The
latest model from Google DeepLab (‘DeepLab v3+’ [18]) adapts the Xception
network for segmentation purposes. Depth-wise separable convolutions were cho-
sen for this work as they factorize the 3D convolution in an intuitive fashion,
breaking the process into spatial and channel-wise components (see Sect. 3.2).

3 Architecture Design

3.1 Adapted U-Net

The ‘U-Net’ [5] was first adapted to provide a baseline performance for neural
networks in the context of fetal adipose segmentation. The encoder path of the
network contains two convolutional layers (13× 13 kernels, see Sect. 4) followed
by max-pooling, repeated 4 times, resulting in a reduction of spatial channel
dimensions by a factor of 16. With each down-sampling layer the number of
feature channels is doubled, with 48 channels in the first layer, and 768 channels
in the lowest. The decoder is symmetrical, but with up-sampling in place of
max-pooling. The final layer is a 1× 1 convolutional layer.

All convolutional layers were zero-padded, with all but the final layer using
the ReLU non-linearity. The final layer uses a sigmoidal activation to map net-
work predictions to values between 0 and 1, with scores close to 1 indicating a
confident prediction of adipose tissue at a pixel location.
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3.2 Reduced U-Net: U-Ception

This section describes the efforts made to reduce the number of parameters in
the segmentation network, and hence the size of the model’s parameter file.
The proposed method uses depth-wise separable convolutions, which were used
successfully in the ‘Xception’ network [17]. These convolutions were applied to
the U-Net architecture, with the resulting architecture termed U-Ception.

The proposed architecture is essentially identical to the adapted U-Net, but
with more feature channels per layer, and all convolutional layers replaced with
separable convolutional layers. This modification leads to a drastic reduction in
the network’s parameter count, from 296 million to 4.6 million parameters.
The architecture is detailed in Fig. 2.
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Fig. 2. U-Ception architecture

Depth-Wise Separable Convolutions: Regular convolutional layers in CNNs
involve convolutions with three-dimensional kernels. Two of these dimensions are
spatial, and are responsible for combining data from a single channel, in a similar
manner to convolution filters in classical image processing. The third dimension,
however, is responsible for combining information from all of the feature chan-
nels, such that new feature maps can be produced. The number of parameters in
the convolution tensor for a layer, therefore, can be described by Eq. 1. Here, K
is the spatial dimension of the square filter, N is the number of input channels,
and M the number of output channels. Note that K2N parameters are required
to compute each of the M output feature maps. The process is illustrated in
Fig. 3(a).

nparameters = K2NM K,N,M ∈ Z
+ (1)

The idea behind depth-wise separable convolutions is to separate the convo-
lutions in the spatial dimensions and the channel dimension. First, one feature
map is calculated per input channel by spatially convolving each input channel
with a single filter. Next, the output is fed to a regular convolutional layer with
1×1×N kernel size, so the information across input channels can be combined.
In this way, the multiplicative interaction between the N input channels and M
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output channels is not scaled by the squared spatial kernel size, K2. The number
of parameters in this new layer is described by Eq. 2.

nparameters = K2N + K̄2NM = K2N + NM K,N,M ∈ Z
+ (2)

Note that the variable K̄ = 1 is introduced to illustrate that the second stage
of convolutions is identical to a regular convolutional layer with a spatial kernel
size of 1. Also, in some implementations, a channel multiplier Cm is introduced
such that, in the spatial convolution stage, Cm intermediate feature maps are
produced per input channel. This would scale the number of parameters in the
depth-wise separable layer by Cm. In this work, a channel multiplier of 1 is used.
The process is shown in Fig. 3(b).
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Fig. 3. (a) Regular convolutional layer. Here convolution occurs with a tensor with
square spatial dimensions K, and depth equal to the number of input channels, N .
Each of the M filters requires K2N parameters. (b) Separable convolutional layer.
Here each input feature channel is convolved separately with Cm tensors with depth
of 1 and spatial dimensions of K. The resulting feature maps are convolved with M
tensors of depth NCm and spatial dimensions of 1. In this work, layers with Cm = 1
are used.

4 Experimental Setup

4.1 Fetal Dataset

Data for this task was collected as part of the INTERGROWTH-21st Project,
with 324 3D ultrasound volumes of healthy fetal arms acquired. From each
volume, five 2D slices were extracted perpendicular to the humerus and anno-
tated by one of three experts, delineating the adipose tissue, as shown in Fig. 4.
The images were collected with a Philips HD9 ultrasound machine (resolution
of 0.99 mm per voxel), with the subjects’ gestational ages ranging from 17 to
41 weeks. The dataset is a larger sample of that used by Rueda et al. [6] (the
previous effort at fetal adipose segmentation).
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Fig. 4. Extraction and segmentation of 2D slices from an ultrasound volume. Left-
most image shows a sagittal view of the fetal humerus. Red points show humerus end
points and yellow lines indicate slice planes. Intersections of the red and yellow lines -
the yellow points - show centers of extracted slices. Also shown is one extracted slice
(middle) and its segmentation (right). (Color figure online)

The dataset was divided with an 80–20 split into folds for training and testing
respectively. The training set was further broken down, with 20% of the 2D slices
used as a validation set, on which network hyper-parameters were tuned. The
training, validation and test sets had 1100, 270 and 340 slices respectively, and
all slices were resized to 128 × 256 pixels.

4.2 Implementation Details

Both CNNs were optimized by maximizing the following function:

L(θ;y, ŷ) = −λ1||θ||2 +
n∑

i=1

IoU(yi , ŷi) + λ2h(yi , ŷi) (3)

Here, y and ŷ represent the manual training labels and the network predic-
tions respectively, while θ represents the CNN parameters. IoU represents the
intersection-over-union score of the manual labels and the network predictions,
with λ1 signifying the weight decay strength. The function h represents a bound-
ary regularizer, which explicitly penalizes incorrect network predictions at the
adipose boundaries.

Optimization was done with stochastic gradient descent, reducing the learn-
ing rate by a factor of 10 every 15 epochs. Both networks were implemented
using Keras (TensorFlow backend), with training done on an NVIDIA Quadro
P5000 GPU. Interestingly, independent optimization of both the adapted U-Net
and the U-Ception models showed that both networks had identical optimal
hyper-parameter settings. An initial learning rate of 1 × 10−2 was used, with
λ1 (weight decay) set to 1 × 10−2, and λ2 (boundary regularizer strength) to
1 × 10−3. Furthermore, batch normalization was used on all layer inputs, and
dropout regularization was used on the input layer and lowest layer (p = 0.2
and p = 0.5 respectively) as in the original U-Net. Kernels of size 13 × 13 were
used in both networks to deal with the large areas of adipose discontinuity in
the images (a product of ultrasound shadows).
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5 Results and Discussion

This section compares the performances of the regular convolution U-Net and
U-Ception networks on a held-out test set of 340 slices (extracted from 68 vol-
umes).

Sample qualitative results are shown in Fig. 5. It can be seen that the net-
works generally capture the adipose tissue well, with both learning to predict
closed-ring segmentations, even in the presence of adipose signal occlusion (for
instance, the vertical shadow below the humerus). Failure modes are also shown
(Dice coefficient < 0.5), with failure occurring in the presence of a sparse signal
(Example 6), or when the target slice has many distracting shapes (Example 7).

Fig. 5. Sample results from the CNNs on a held-out test set. Failure modes are shown
in Examples 6 and 7. Note that a disproportionate number of failure modes are shown.

A chi-square test was performed on the Dice coefficients produced by the
U-Net and U-Ception models on the test set. It was found that there is no
statistically significant difference between the U-Ception’s Dice distribution and
that of the regular U-Net (p ≈ 1.00). Though this p value is high, it is perhaps
unsurprising given the visual similarities of the two models’ results (see Fig. 5).
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Fig. 6. (a) Bland-Altman plot of the number of segmented pixels in U-Ception model
against regular convolution model. (b) Adipose area trend (in number of segmented
pixels) with respect to gestational age using test set volumes.

Further insight into performance of the models can be gained by inspecting
Bland-Altman plots of the number of segmented pixels in both models’ predic-
tions. Figure 6(a) shows a plot of the U-Ception architecture compared against
the regular convolution U-Net. This diagram suggests strongly that there is lit-
tle difference in the predictions of the two models; it shows very tight standard
deviation bounds on the difference between the number of segmented pixels, and
a similarly small mean difference (μ = 100, σ = 380).

An example of the clinical applications of the algorithms is given in Fig. 6(b),
where the trend of adipose area against gestational age is given. Here, the trends
computed using the manual annotations and CNN results are given for all vol-
umes in the test set. The similarity between the manual and CNN trends is
evident, as is the similarity of the trends between the CNNs.

5.1 Comparison with Previous Work

The results of this work are quantitatively compared with the previous efforts by
Rueda et al. [6] in Table 1. Here, the accuracy (sensitivity and specificity) and
Dice are detailed. To contextualize the results, it should be noted that the images
fed to the algorithm by Rueda et al. were heavily cropped to contain only the area
of interest. This makes the task of adipose localization easier, contributing to the
higher mean Dice coefficient achieved by the previous work. It also increases the
foreground-to-background ratio, contributing to the higher specificities achieved
by the CNNs. It should also be noted that a larger evaluation set was used in
this work - 340 slices, in contrast to the 81 slices in the work by Rueda et al. -
contributing to the larger standard deviations in our results.

Nonetheless, the classical algorithm outperforms the CNNs in terms of Dice
coefficient, while the CNNs achieve better results with respect to both accuracy
metrics. Also, the U-Ception network gives a small but not statistically signifi-
cant compromise in performance when compared against the regular convolution
U-Net.
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Table 1. Comparison of method by Rueda et al. [6] against the proposed CNNs (μ±σ).

Sensitivity (%) Specificity (%) Dice (%)

Rueda et al. 87.30 ± 3.84 97.05 ± 1.17 87.11 ± 2.60

Regular conv. 88.29 ± 12.15 98.85 ± 0.75 80.89 ± 13.75

U-Ception 87.45 ± 13.30 98.71 ± 0.83 80.25 ± 11.50

5.2 Comparing Algorithm Efficiencies

Table 2 summarizes the two model sizes and prediction times of both networks
on a CPU and on a variety of portable devices. The CPU prediction times
are averaged over 100 samples. The times shown compare favorably with those
required for classical techniques - many of which take several minutes to run on
a modern CPU [1].

Table 2. Model sizes of both networks, as well as prediction times on a range of
hardware. Note that the regular convolution model was too large to deploy on the
mobile devices.

Model size
i5-4200M Google Samsung Samsung

CPU Pixel 2 Galaxy S5 Galaxy Tab A

Regular conv. 1.10 GB 15.8 s N/A N/A N/A

U-Ception 18 MB 2.7 s ≈4 s ≈8 s ≈11 s

The table also shows that, with modern hardware, even the large network can
make a prediction in reasonable time (15.8 s), as the number of FLOPs required
for a forward pass rises only linearly with the number of parameters in the
network. Thus, the main bottleneck in implementation of these networks on a
mobile device is clarified: the size of the weight file. Typically, TensorFlow stores
each parameter as a 32-bit float, meaning a network with 20 million parameters
will have a weight file of approximately 75 MB in size. The regular convolution U-
Net has 296 million parameters, with the resulting weight file taking 1.10 GB
on disk. The U-Ception architecture requires only 4.6 million parameters, with
a weight file of 18 MB. Thus the model provides a reduction in both weight file
size and parameter count of 98.4%, while achieving similar performance on the
test set (with a 0.6% compromise in mean Dice coefficient).
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6 Conclusion

This work proposes an end-to-end framework for the semantic segmentation of
fetal adipose tissue using convolutional neural networks. Furthermore, a highly
efficient novel network architecture - U-Ception - is proposed, using depth-wise
separable convolutions to reduce model parameter count. It is shown that the
U-Ception architecture’s performance is statistically equivalent to that of the
regular convolution U-Net, with the benefit of a 98.4% reduction in model size.
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