
Combining Deep Learning
and Multi-atlas Label Fusion

for Automated Placenta Segmentation
from 3DUS

Baris U. Oguz1, Jiancong Wang1, Natalie Yushkevich1, Alison Pouch1,
James Gee1, Paul A. Yushkevich1, Nadav Schwartz2, and Ipek Oguz1(B)

1 Penn Image Computing and Science Laboratory (PICSL),
Department of Radiology, University of Pennsylvania,

Philadelphia, PA, USA
ipek@cs.unc.edu

2 Maternal and Child Health Research Program, Department of OBGYN,

University of Pennsylvania, Philadelphia, PA, USA

Abstract. In recent years there is growing interest in studying the pla-
centa in vivo. However, 3D ultrasound images (3DUS) are typically very
noisy, and the placenta shape and position are highly variable. As such,
placental segmentation efforts to date have focused on interactive meth-
ods that require considerable user input, or automated methods with
relatively low performance and various limitations. We propose a novel
algorithm using a combination of deep learning and multi-atlas joint
label fusion (JLF) methods for automated segmentation of the placenta
in 3DUS images. We extract 2D cross-sections of the ultrasound cone
beam with a variety of orientations from the 3DUS images and train a
convolutional neural network (CNN) on these slices. We use the predic-
tion by the CNN to initialize the multi-atlas JLF algorithm. The poste-
riors obtained by the CNN and JLF models are combined to enhance the
overall segmentation performance. The method is evaluated on a dataset
of 47 patients in the first trimester. We perform 4-fold cross-validation
and achieve a mean Dice coefficient of 86.3±5.3 for the test folds. This is
a substantial increase in accuracy compared to existing automated meth-
ods and is comparable to the performance of semi-automated methods
currently considered the bronze standard in placenta segmentation.

1 Introduction

Adverse pregnancy outcomes such as preeclampsia and intrauterine growth
restriction contribute to perinatal morbidity and mortality. Given mounting evi-
dence [1–3] that placental abnormalities are related to such outcomes, placental
morphometry has recently become major foci of study. Ultrasound imaging is
the most common modality to study the placenta in clinical settings due to its
low cost, wide availability and ease of acquisition. 2D and 3D ultrasound have
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been used to study early, in utero placental size and morphology in relation to
birthweight and preeclampsia [14,16]. While placental biometry may be help-
ful in clinical care [15], there is currently no clinical tool to evaluate placental
morphology due to the lack of automated segmentation methods.

Automated quantification of the placenta from 3D ultrasound images (3DUS)
is challenging. 3DUS images are prone to high levels of speckle noise, and the
contrast between the placenta and uterine tissue is especially weak in early preg-
nancy. Additionally, the position of the placenta with respect to the amniotic
sac is highly variable which makes it difficult to even detect the placenta auto-
matically, much less determine its precise boundaries. In particular, placentas
can be positioned anteriorly or posteriorly to the amniotic sac. Maternal habitus
and fetal shadowing artifacts can further obscure the placenta boundary, espe-
cially in posterior placentas. The size and shape of the placenta are variable, and
uterine contractions can dramatically affect the shape of the placenta.

Many current techniques for placental segmentation from 3DUS rely on user
input to overcome these challenges. These include the commercial VOCAL soft-
ware (GE Healthcare) and a random-walker (RW) algorithm [4,17]. Such inter-
active methods are time-consuming, subjective and prone to intra- and inter-
observer variability, which makes automated methods more attractive. Only 4
fully automated approaches have been proposed to date.

1. A recurrent neural network [19]. While this is a more general-purpose seg-
mentation framework that aims to segment not just the placenta but also the
gestational sac and the fetus, the placenta segmentation accuracy achieved
with this method is rather limited (average Dice of 0.64 is reported in [19]).

2. A multi-atlas label fusion algorithm [10]. Since this is a registration-based
method, it suffers from registration initialization robustness issues. The fully
automated version of the algorithm relies on initialization based on the ultra-
sound cone beam, but is limited to anterior placentas (mean Dice of 0.83
in anteriors reported in [10]). For generalization to non-anterior placentas,
manual initialization on a 2D slice is required to guide the registration [11].

3. A deep convolutional neural network (CNN), DeepMedic [8]. The “ground
truth” segmentations are produced via the RW algorithm [17], as opposed to
fully manual expert annotations used in other studies. While this algorithm is
readily applicable to anterior and posterior placentas, the performance leaves
room for improvement (median Dice of 0.73 reported in [8]).

4. An improved version of [8], with a 3D fully convolutional network (OxNNet)
[9]. Perhaps the most distinguishing aspect of this paper is the significantly
larger amount of training data. They utilize 2400 labelled 3DUS images in a
2-fold cross validation setup. They report a mean Dice score of 0.81. Like [8],
this used the results of the random walker algorithm as “truth”.

We propose a novel technique that combines the strengths of the deep learn-
ing and multi-atlas label fusion (MALF) approaches for fully automated segmen-
tation of the placenta from 3DUS images. MALF methods require good registra-
tion initialization and have limited performance in hard-to-register patches such
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as thin features and low-contrast boundaries. CNN’s [6] are more robust to such
problems but tend to be noisier, and are hard to train in 3D given the sparsity of
training data in medical image analysis; as such, their results can lack 3D shape
context. Triplanar CNN’s were studied in [12] as a workaround. In our proposed
algorithm, we begin with a 2D CNN to construct an initial prediction and we
leverage the rotational ambiguity of the ultrasound cone beam for an innovative
data augmentation strategy. Next, we deploy a MALF algorithm using the CNN
results to initialize the registrations. We use a second-tier model to combine the
posterior maps from the CNN model and the MALF method.

2 Methods

Our algorithm begins with pre-processing and extracting 2D slices from the
3DUS images and trains a convolutional neural network (CNN) with online ran-
dom augmentation to create an initial prediction in 3D. Next, multi-atlas joint
label fusion (JLF) is applied on the CNN output to construct an alternative
prediction. The predictions from CNN and JLF are combined via a second tier
random forest (RF) model to obtain the final segmentation result (Fig. 1a).

(a) (b)

Fig. 1. (a) Workflow of our algorithm. (b) Placenta cross-sections from various views.

2.1 Dataset, Pre-processing and Augmentation

Our dataset consists of first trimester 3D US images from 47 subjects with
singleton pregnancies, acquired with GE Voluson E8 ultrasound machines. 28
subjects had anterior placentas, and 19 had posterior placentas. Each image has
isotropic resolution (mean: 0.47 mm, min: 0.35 mm, max: 0.57 mm). Each image
was manually segmented by N.Y.. under the supervision of N.S., who has over
10 years of experience in prenatal ultrasound imaging and who has segmented
100’s of placentas for other research endeavors. The ITK-SNAP software1 was
used for segmentation. The main metric for evaluating the pipeline is the Dice
overlap between automated results and these manual segmentations.
1 www.itksnap.org.

http://www.itksnap.org
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26 of the 47 subjects were imaged twice within the same session. Patients
were allowed to move around between the two acquisitions. These secondary
images were used in a reproducibility experiment, described in Sect. 2.6 below.

The images in our dataset have various dimensions and may contain sizable
blank spaces around the edges. Thus, the images are cropped to a 3D bounding
box of the ultrasound cone beam (automatically, by simply thresholding at 0),
and downsampled to standard dimensions (1283).

We extract 2D slices from the original 3D images and train a CNN with
2D convolutions. Our experiments showed that the axial view presents little
information to the CNN regarding the placenta. Therefore, we extract slices
only in the sagittal (0◦) and coronal (90◦) planes, and a 45◦ plane between
them. This leads to a stack of 128× 3 = 384 slices per subject, along 3 different
orientations. Given the rotational ambiguity of the ultrasound probe, these 3
orientations contain similar cross-sections of the placenta (Fig. 1b).

To further mitigate the impact of a small training dataset, we use online
random augmentation. Various transforms are applied to each 2D slice before it
is seen by the CNN. These transforms consist of horizontal/vertical flipping, 2D
translation, 2D rotations (in-plane), and scaling. Whether each transformation
is applied, and if relevant its magnitude, is determined randomly. Translation
magnitudes are between −5/+5 pixels (image size is 128× 128). In-plane rotation
amount is between −15/+15◦. Scaling is performed by zooming in 0–10%.

2.2 Convolutional Neural Network

Typical CNN’s for classification tasks [6] contain 3 main types of layers: (1)
Convolutional layers extract local features by sliding a kernel (aka filter) over
the input image to compute a feature map. (2) Pooling layers downsample the
feature maps obtained by the convolutional layer, commonly applying a function
like max, mean, sum, etc. (3) Fully connected layers consolidate the features from
convolutional and pooling layers, and output probabilities for each class.

The strength of convolutional layers and CNN’s comes from their ability to
preserve spatial relationships in the input images. The main parameters that
affect the performance of a convolutional layer are the kernel size, the strides,
and the number of feature maps. Kernel size and strides are often chosen empir-
ically in relation to the input image dimensions. The number of feature maps
determines the number of trainable parameters in the layer and must be chosen
with consideration of under/over-fitting.

Initial convolutional layers usually extract low-level features such as edges,
corners, etc. Successive layers build on top of previously extracted feature maps
and discover higher-level features significant for the task. Pooling layers condense
the information from convolutional layers, by retaining whether a feature is
present in the active kernel window, but dismissing the exact location within
the kernel. While this quality is favorable in many vision tasks where the goal
is to detect a higher level entity (cat, car, face) in the image, in our preliminary
experiments we found that using pooling layers degrades the mean Dice results
of CNN predictions. This might be because the task of segmentation requires a
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decision for each voxel in the input. However, further investigation remains for
future work; in the work presented here, pooling layers were not used.

U-net [13] proposes a multi-channel approach to the problem of retaining
location information. They use max-pooling layers for downsampling but still
present the unpooled feature maps to the final convolution by side channels.
In our approach, we utilize convolutional layers with larger strides instead of
pooling, to retain the benefit of condensing feature information, while keeping
the location information intact. This effectively downsamples the feature maps
from the convolutional layers, while preventing systematic loss of information.

Fully connected layers are used when the dimensions of the output are much
smaller relative to the input (classification, bounding box locations, etc.). In the
segmentation task, the dimensions of the output are identical to that of the input.
To reach the required output dimensions from the downsampled feature maps,
we apply upsampling via transposed convolution (aka deconvolution) layers.

Our CNN architecture consists of 23 layers in total: 1 batch normalization,
15 ordinary convolutions (1× 1 strides), 3 downsampling convolutions (2× 2
strides), 3 upsampling deconvolutions (2× 2 strides), and 1 sigmoid output
(Fig. 2). All the kernels we use in the convolutional layers have the dimensions
of 3× 3, and ReLU was used as activation function in all intermediate layers.

Fig. 2. Our CNN architecture contains 23 layers in total: 1 normalization + 18 convo-
lutional + 3 deconvolutional + 1 sigmoid. There are 2,730,627 trainable parameters.

In the training phase, we use 384 2D slices for each subject (128 each from 0◦,
45◦, and 90◦ orientations), and train a single CNN. In the prediction phase, we
produce 4 probability maps for each 2D slice, by flipping the slice horizontally
and vertically. The mean of the 4 orientations is used as the prediction for that
slice. For each subject, we predict for the three orientations above, obtaining
three 3D probability maps. To provide an initialization for the JLF step, we
take the mean of these three maps and binarize by a threshold.

The CNN code is implemented on the Python/Numpy stack. We used Ten-
sorFlow for the CNN backend and Keras as a higher level frontend. The CNN
training is run on a machine with 4x Nvidia GTX-1080Ti GPUs. The online
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random augmentation is performed on the CPU, in parallel to the CNN working
on the GPU. One epoch of training takes around 2–3 min, the final model at 35
epochs lasts around 90 min. Due to our cross-validation setup, we trained 4 such
models, one for each fold. The total time for the CNN part of the pipeline takes
around 8 h including pre/post processing. The prediction phase is much faster
and completes within minutes for the entire dataset.

2.3 Joint Label Fusion (JLF)

Registration-based segmentation methods are popular in medical image analysis.
In the simplest form, an atlas image is created via manual annotation. This atlas
image is registered deformably to the target image, and the segmentation of the
target is calculated by applying the same deformation to the atlas annotation.
This single atlas method does not generalize well, due to the large variability
in shape, size, and location of anatomical structures. The next evolution of this
method utilizes multiple atlases instead of a single one [5]. Each atlas produces
a solution to the target image, and these solutions are combined in a label fusion
step. The fusion is typically based on a weighted voting scheme, usually taking
into consideration the similarity of each atlas to the target image.

Specifically, we use the publicly available JLF approach [18] for label fusion,
which jointly estimates the weights for all available atlases, minimizing the
redundancy from correlated atlases. These weights are given by wx = M−1

x 1n

1tnM−1
x 1n

,
where 1n = [1; 1; . . . ; 1] is a vector of size n and t stands for transpose. The depen-
dency matrix M is estimated by Mx(i, j) = [|Ai(N(x))−T (N(x))| · |Aj(N(x))−
T (N(x))|]β , where |Ai(N(x)) − T (N(x))| is the vector of absolute intensity dif-
ference between a warped atlas Ai and the target image over a local patch N(x)
centered at x and · is the dot product. β is a model parameter. Default values
were used for all parameters in the JLF implementation [18].

All registrations were done using the open source greedy package2. We use
the binary prediction from the CNN as a mask to guide the affine registrations,
which use the SSD metric. The subsequent deformable registrations do not use
a mask as the affine registration provides a stable enough initialization; the
normalized cross correlation (NCC) metric is used with a 4 × 4 × 4 patch size.

2.4 Combining CNN and JLF Results

Our CNN step produces 3 probability maps for each subject (for 0◦, 45◦, and
90◦ orientations). We average and threshold these to provide input for the JLF
step. We obtain another probability map from the JLF, ending up with 4 maps.
Simply averaging these maps offers limited Dice improvement over the individ-
ual probability maps. To extract more information from the 4 maps, we utilize a
second tier model. This model takes the 4 probabilities for each pixel and addi-
tional statistical features (min, mean, max, stdev, max-min) to produce a final
probability. We use a random forest model with 50 trees and max depth of 6.
2 https://sites.google.com/view/greedyreg/home.

https://sites.google.com/view/greedyreg/home
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2.5 Experimental Methods for Cross-Validation

Given the relatively small dataset, we opted for a two-tiered 4-fold cross-
validation (cv) scheme. At each cv step of the 1st tier, we used 3 folds for
training a CNN, and the last fold for testing, ending up with 4 CNN’s. Each of
these CNN’s use identical architecture and parameters, to prevent overfitting to
a single test fold.

These unseen test fold predictions are then used as a registration mask in
the JLF part of the pipeline. For each subject, the manual segmentations from
all training subjects are used as atlases (i.e., training), using the same train/test
split as the CNN folds. Thus, for each of the test folds, we end up with 3 proba-
bilities (for 0◦, 45◦, and 90◦ orientations) from a CNN and the JLF probability.

To train the 2nd tier RF, we apply an inner 4-fold cv to each test fold from the
CNN/JLF tier, for a total of 16 RF models with identical parameters. Finally,
we approximate the performance on an independent validation set by taking the
mean of the results from the 16 unseen test folds of the 2nd tier inner cv.

2.6 Reproducibility Experiment

During the recording of 3DUS images, movements of the subject and the fetus,
specific position of the ultrasound probe, and other factors may result in signif-
icant variations in image appearance. 26 of the 47 subjects in our dataset have
secondary images taken within the same session, which we use to test the repro-
ducibility of our algorithm. In this experiment, we trained our CNN model on
the 21 subjects with only one image. We performed the JLF step with using only
these 21 subjects as atlases. We trained the RF models via an inner 4-fold on
these 21 subjects. Using this pipeline trained on the disjoint set of 21 subjects,
we segmented the placenta for the 26 test subjects, 2 segmentations for each
subject (one per image). We calculated the volume of the segmentations, and
evaluated the correlation of volume between the pairs of images.

3 Results

Our results are summarized in Fig. 3. The proposed combination of CNN and
JLF results via a second tier RF model outperforms the individual methods.

Fig. 3. Dice scores for test folds. P-values from paired two-tailed t-tests are reported.
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These differences were found to be highly significant (p < 0.001) in paired two-
tailed t-tests. We note that all compared methods have lower performance in
the posterior placentas where fetal shadowing artifacts are common. Qualitative
results are shown in Fig. 4. The reproducibility results are shown in Fig. 5-a.

Fig. 4. Qualitative results from an anterior and a posterior subject. In the first sub-
ject, CNN models are erroneously drawn to bright regions, but the JLF accurately
captures the placenta. In the second subject, JLF oversegments the placenta due to
weak boundaries, but CNN models capture the correct result. In both subjects, the
second-tier RF model effectively combines the two approaches.

(a) (b)

Fig. 5. (a) Test-retest volumes (measured in ml) at each stage of our pipeline are
shown for 26 pairs of images. The Pearson correlation coefficient between volume test-
retest measurements was 0.786 for CNN, 0.787 for CNN+JLF, and 0.797 for the final
(CNN+JLF+RF) method. Final correlation was 0.848 when one outlier was removed,
and 0.874 when 3 outliers were removed. (b) Final Dice scores with various number of
atlases for the JLF step. The differences between using the entire training fold (n = 35)
and only 5 randomly selected subjects were minimal (0.859 vs. 0.863).

4 Discussion

Our Findings. Our combined approach utilizes both the automated power of
CNN’s and the 3D context of multi-atlas label fusion. Both methods have their
strengths and weaknesses, and our second tier RF model effectively blends their
results into a more accurate and robust final prediction. Our results (0.863 mean
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Dice overall) provide a substantial improvement over existing automated meth-
ods (mean Dice of 0.81 reported in [9], median Dice of 0.73 reported in [8],
mean Dice of 0.64 reported in [19], mean Dice of 0.83 reported for anterior-only
placentas in [10]), and are comparable to the performance of semi-automated
methods (mean Dice scores of 0.80 reported in [11] and 0.86 reported in [17]),
which require manual input and may have reproducibility issues.

Comparison to Other Network Architectures. A common task in com-
puter vision is classification, including binary, multi-class and multi-label prob-
lems. In these settings, the output is one or more ordinal labels for each input
image. Common architectures for this task contain convolution and downsam-
pling layers in the first half of the network. The second half contains fully con-
nected dense layers, producing predicted labels from the inner representation of
the first half. Image segmentation differs from classification, requiring an out-
put for each input voxel. Thus, most common architectures are variations of the
fully convolutional network [7]. In this setup, the second half contains upsam-
pling layers, producing a full size prediction from the inner representation. Our
CNN is also based on this architecture. In the downsampling layers, we used
strided convolutions, which produced better results in our experiments than the
pooling approach. We also experimented with U-net [13] style side channels, but
that also did not provide much improvement, and extended training time. A
formal comparison of these alternative architectures remains as future work.

2D vs. 3D CNNs. In recent years, CNN’s have consistently shown high per-
formance in many visual learning tasks, especially thriving on large amounts
of training data. The medical imaging field, in contrast, typically has much less
data available. Our annotated 3DUS dataset consists of 47 subjects, which is sig-
nificantly low in quantity when compared to general image datasets containing
multi-million labelled images used for more general CNN tasks. It is difficult to
obtain large amounts of labeled placenta images, since the segmentation needs
to be manually created by expert annotators in a time-consuming process.

While it is possible to train a CNN on 3D images using 3D convolutions, our
dataset size is too small to fully take advantage of such an approach. Training
3D CNN’s also requires much larger computational resources compared to 2D
CNN’s. Therefore, we opted for using 2D CNNs on slices from the 3DUS images.
Evidently, this leads to a loss of 3D context. We mitigated this shortcoming by
extracting 2D slices from three different axises. We also applied random online
augmentation during training to further increase the variance in the dataset.

Number of Atlases Needed for MALF. MALF is computationally inten-
sive. The runtime grows linearly with each atlas and each test subject, since
each pair needs to be registered. In our dataset consisting of 47 subjects, using
all train-fold subjects (n = 35) as atlases took around 1000 CPU-hours on a
computer cluster, utilizing up to 25 CPUs in parallel. This is longer than the
CNN training time. More importantly, in a real-life application, the CNN only
needs to be trained once whereas the atlas registrations are needed for each
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new test subject. This causes a bottleneck for the practical applicability of our
method.

We hypothesized that the main benefit from the JLF step in this application
is the access to 3D context, which can be gained from just a handful of atlases.
This is unlike other applications where a large set of atlases are needed to ade-
quately represent the underlying distribution of image appearance. To test this
hypothesis, we experimented with using a small random subset of subjects in
the train fold as atlases, instead of all of them. The results for utilizing 5-10-20
atlases are given in Fig. 5-b. While using the full train fold as atlases gives the
best results, the mean Dice when using only 5 randomly chosen subjects is still
very closely comparable (0.8588 vs. 0.8631). This finding supports our hypothe-
sis. It also reinforces the main idea behind our approach, which is combining two
methodologically different approaches to produce a more robust segmentation.
Running the JLF step with even just 5 atlases provides considerable improve-
ment in the Dice scores while reducing the runtime substantially.
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