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Abstract. Twin-to-twin transfusion syndrome is a potentially fatal pla-
cental vascular disease of twin pregnancies. The only definitive treatment
is surgical cauterization of problematic vascular formations with a fetal
endoscope. This surgery is made difficult by the poor visibility conditions
of the intrauterine environment and the limited field of view of the endo-
scope. There have been efforts to address the limited field of view of fetal
endoscopes with algorithms that use visual correspondences between suc-
cessive fetoscopic video frames to stitch those frames together into a
composite map of the placental surface. The existing work, however, has
been evaluated primarily on ex vivo images of placentas, which tend to
have more visual features and fewer visual distractors than the in vivo
images that would be encountered in actual surgical procedures. This
work shows that guiding feature matching with deep learned segmen-
tations of placental vessels and grid-based motion statistics can make
feature-based registration tractable even in in vivo images that have few
distinctive visual features.
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1 Introduction

1.1 Twin-to-Twin Transfusion Syndrome

Twin-to-twin transfusion syndrome (TTTS) is a disease of placental vasculature
that can affect twin pregnancies. In some twin pregnancies, the two fetuses share
a single placenta. It is possible for vascular connections to develop between the
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portions of the placenta that serve each of the fetuses. When an unequal distri-
bution of blood across these connections leads to a net flow of blood from one
twin to the other, the result is TTTS [5]. TTTS can have serious consequences
for both twins, including cardiac dysfunction in the twin that serves as a net
blood recipient, injury to the central nervous system in the twin that serves as
a net donor, and death in either twin [1,5].

While there are several options for managing TTTS, there is only one defini-
tive treatment: fetoscopic laser photocoagulation surgery [4]. In this procedure,
a specialized endoscope known as a fetoscope is inserted through an incision in
the maternal abdominal wall and then into the uterus. Once in the uterus, the
fetoscope is used to inspect blood vessels on the surface of the placenta. Any
problematic vascular connections that are found are cauterized with a laser. This
procedure is illustrated in Fig. 1.

Fig. 1. A diagram of fetoscopic laser photocoagulation surgery for twin-to-twin trans-
fusion syndrome by Luks [8]. Pictured are twin fetuses, each within their own amniotic
sac. There is a single, shared placenta with problematic vascular connections that
allow a net flow of blood from the donor fetus (left) to the recipient fetus (right). An
endoscope (top) is used to inspect the placental vasculature and find problematic con-
nections. When such connections are found, they are cauterized with a laser (center).

The challenges of fetoscopic laser photocoagulation are well described in the
literature [12–14]. The problematic placental vascular formations cannot be visu-
alized preoperatively with ultrasound or magnetic resonance imaging. They must
therefore be identified intraoperatively using a fetoscope. This is made difficult,
however, by the turbidity of amniotic fluid. The turbid nature of amniotic fluid
not only reduces the clarity of the fetoscopic image, but also makes it impossible
for the fetoscope’s attached light source to reliably illuminate structures that are
more than a few centimeters away. The fetoscope must therefore be kept close
to the placental surface, but this has the effect of reducing the field of view.



130 P. Sadda et al.

The distance across the placental vascular network (i.e. the distance from
one twin’s umbilical cord to the other) can be several dozen times the diameter
of the fetoscope’s field of view. As the surgeon can only see a small fraction of
the placental surface at any given time, he or she must create a mental map
of the relevant placental anatomy in real time and must rely on landmarks
from this mental map in order to remain oriented as the surgery progresses.
The high cognitive burden that fetoscopic laser photocoagulation surgery places
on the surgeon increases the risk of error, which in the worst case can lead
to the failure to identify and cauterize one or more vascular malformations,
thereby necessitating a follow-up surgery. There has been interest in reducing
the cognitive burden on the surgeon by replacing the surgeon’s mental map-
making process with computer software that performs a similar task.

Fig. 2. An example of a panoramic view of the vasculature of a placenta that was cre-
ated by concatenating fetoscopic video frames. This example was manually constructed
from 30 min of fetoscopic footage from a fetoscopic laser photocoagulation surgery.

1.2 Prior Work

In the existing literature on placental panorama construction, by far the most
common approach is to extract visual frame-to-frame correspondences and
use those correspondences to calculate a homography from one frame to the
other [3,7,10,14]. Such approaches consist of a four step process: (i) using a
feature detector to select key points from within an image; (ii) converting the
high-dimensional raw pixel data of the image regions surrounding each key point
into lower-dimensional vectors with the use of a feature description algorithm;
(iii) matching the key points from one image with key points from the other,
usually via a nearest-neighbor criterion on the key points’ associated feature
descriptors; and (iv) calculating a homography from the coordinates of the
matched key points. The two most popular feature matching and description
algorithms in the existing literature on placental panorama construction are
the Scale-Invariant Feature Transform (SIFT) and its derivation, Speeded Up
Robust Features (SURF).
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To the best of the authors’ knowledge, all placental panorama construction
studies to date have been evaluated primarily on ex vivo images [3,10,12–14] or
images of placental phantoms [7]. Ex vivo images of placentas, however, tend to
have more visual features and fewer visual distractors than in vivo images [6,7].
Blood vessels are identifiable in both ex vivo and in vivo images, but ex vivo
feature-rich backgrounds whereas in vivo images tend to have backgrounds that
are almost entirely featureless (Fig. 3).

Fig. 3. Blood vessels are visible in both ex vivo and in vivo images of placentas. Ex
vivo images, however, are rich in background features while in vivo images often have
backgrounds that are entirely devoid of features. In the in vivo image, the guide light
for the cautery laser is visible in the upper center area. The guide light moves along
with the fetoscope, so it is not suitable as a landmark for registration.

Gaisser et al. [7] simulated ex vivo and in vivo settings using a placental
phantom and found that the performance of SIFT and SURF feature detectors
could fall dramatically in the translation to in vivo. When applied to images
from an in vivo setting with amniotic fluid of a yellow coloration, SIFT detected
73% fewer features than it did in an ex vivo setting. SURF detected 45% fewer
features. The results reported by Gaisser et al. suggest that the underlying issue
in registering in vivo placental images is a dearth of high-quality key points. If
few key points are repeatable between different in vivo views of the same portion
of a placenta, then there will be few matches. A homography calculated from
a small number of matches will be highly sensitive to false or outlier matches.
Furthermore, if the number of matches is low enough it will not be possible
to compute a homography at all. Bian et al. [2] argue, however, that in many
feature matching tasks, the underlying issue is not that there is a lack of good
key points or good matches, but that standard matching techniques have dif-
ficulty distinguishing good matches from bad matches. It follows that better
algorithms for determining matches between feature descriptors may be able to
produce more accurate homographies for registering in vivo placental images
into a panoramic map. In this work, we show that by extending the matching
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algorithm beyond the typical nearest-neighbor approach, it is possible to extract
meaningful matches between in vivo placental images even with low-quality key
points and to exceed the accuracy of registrations produced with SURF and
SIFT feature matching.

2 Methods

2.1 Feature Matching

Bian et al. [2] argue that when feature matching fails to produce sufficient
matches, the underlying issue is often not a lack of good matches, but diffi-
culty in distinguishing good matches from bad matches. In other words, when
scoring matches (which is typically done by calculating the distance between
the feature descriptors of the two matched key points), there tends to be a sig-
nificant overlap between the score distribution of true matches and the score
distribution of false matches. Setting a high minimum threshold for the match
score minimizes the number of false positive matches but also eliminates many
true matches.

Feature descriptor distance is not the only method for scoring matches.
Bian et al. [2] propose scoring feature matches using the observation that true
matches are likely to be neighbored by other true matches whereas false matches
are more frequently found in isolation. Preliminary feature matches are first gen-
erated using the traditional nearest-neighbor approach. One image in the pair
is then divided into a regularly spaced grid. A secondary score for a match that
falls within the i-th cell of the first image and the j-th cell of the second is
calculated as follows:

Si,j = |Xi,j | − 1

where Xi,j = {x1, x2, x3, ..., xn} is the union of matches found in the i-th cell of
the first image and the j-th cell of the second. This secondary score is used to
determine which cells in the first image are paired with which cells in the second.
A constraint is then enforced in which key points within a given cell in the first
image must match to its paired cell in the second image. Bian et al. refer to
this approach as grid-based motion statistics (GMS). We apply a GMS match
refinement step after the initial nearest-neighbor matching.

2.2 Feature Detection and Description

When matching key points with GMS, the quantity of key points is more impor-
tant than their quality. We therefore use a feature detector that can generate a
large number of key points: the AGAST corner detector [9]. We further increase
the number of key points by lowering the AGAST detection threshold to zero and
disabling the suppression of non-max corners. Although GMS is predicated on
the notion that low quality key points can produce useful matches, it remains a
fact that not all key points are of equal value. In vivo fetoscopic images are filled
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with visual distractors such as the glare effects and floating debris in the amni-
otic fluid. These visual distractors are not useful for computing homographies
between placental images.

In Sadda et al. [11], we showed that a neural network could be trained to
segment blood vessels in in vivo placental images with human-level accuracy.
We repurpose the segmentations produced by this trained neural network as a
key point filter. Only key points that fall on a placental blood vessel are used;
all other key points are discarded. The remaining key points are described with
SIFT descriptors and matched with a nearest-neighbors approach. The matches
are then refined with GMS.

2.3 Image Acquisition

In vivo placental images were acquired to evaluate the registration approach
described in this paper. Intraoperative videos of ten fetoscopic laser coagula-
tion surgeries performed at Yale-New Haven Hospital were obtained in a process
approved by an institutional review board. All ten videos were recorded using
a Karl Storz miniature 11540AA endoscope with incorporated fiber optic light
transmission. 544,975 video frames were collected in total, accounting for approx-
imately five hours of video. These video frames were cropped and downscaled
from an initial resolution of 1920×1080 pixels to a resolution of 256×256 pixels.

3 Results and Discussion

3.1 Synthetic Registration Task

188 video frames were extracted from the dataset of in vivo fetoscopic videos
described in Sect. 2.3. Each image was randomly rotated between 0 and 360
degrees, translated by up to 64 pixels (one-quarter of the side-length of the
viewport) along each axis, and perspective-warped by displacing each of the
four corners of the image by up to 20 pixels.

Table 1. The results of the synthetic registration task described in Sect. 3.1. Fetoscopic
video frames were distorted with randomly generated homographies. Various feature
matching algorithms were used to recover the homographies. Each algorithm was eval-
uated in terms of success rate, defined as the percentage of image pairs for which the
algorithm found enough matches to compute a homography, and transformation error,
defined as the mean distance between a grid of points transformed by the ground truth
homography and the same points transformed by the recovered homography.

Algorithm Transformation error (pixels) Success rate

SIFT 143.3 ± 366.2 49.5%

SURF 60.3 ± 65.7 85.1%

AGAST + SIFT + GMS 3.2 ± 5.5 100.0%
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Various feature matching algorithms were used to recover the homography
between the original image and the distorted image. Each algorithm was evalu-
ated in terms of success rate, defined as the percentage of image pairs for which

(a)

(b)

(c)

Fig. 4. An example from the natural registration task described in Sect. 3.2. The lower
part of image A (left column) contains the upper ends of the blood vessels found in
image B (center column). A composite image (right column) is created by overlaying
the registered image A on top of image B. Several algorithms were compared: (a)
Standard SURF key point detection and feature description yields a high ratio of false
matches to total matches. This leads to image A being misregistered to such an extent
that it falls completely outside of the composite image. (b) AGAST key point detection,
SURF feature description, and GMS refinement of matches yields fewer false matches,
but many of these matches are centered in a largely featureless background region. This
leads to a number image A being registered to approximately the correct region of B
but without proper alignment of the blood vessels in A to the corresponding vessels
in B. (c) By using a deep-learned vessel segmentation algorithm, it is possible to limit
AGAST key points to those that fall on blood vessels. This results in the algorithm
correctly registering image A to the upper portion of image B. There are enough true
matches for RANSAC-based homography estimation to identify and eliminate the false
matches at the bottom of the images. The blood vessels in A are correctly aligned to
the corresponding vessels in B.



Better Feature Matching for Placental Panorama Construction 135

the algorithm found enough matches to compute a homography, and transforma-
tion error, defined as the mean distance between a grid of points transformed by
the ground truth homography and the same points transformed by the recovered
homography. The results are summarized in Table 1.

The registration task in this experiment is admittedly trivial: since one image
in each pair is a direct geometric transformation of the other image, a feature
descriptor that lacked any invariance to lighting, illumination, or noise would in
theory be able to generate matches across the images. However, this task is suffi-
cient to show that the standard usage patterns of SIFT and SURF are unsuitable
even for very trivial registration problems involving in vivo placental images.
These methods fail to produce enough matches to compute a homography in
a significant fraction of cases, and even when they can produce homographies,
the homographies are of much lower quality than those produced by matching
AGAST features with GMS.

3.2 Natural Registration Task

22 image pairs were selected from the dataset of in vivo fetoscopic videos described
in Sect. 2.3. Each pair consisted of two images that depicted overlapping segments
of the same vascular formation. To ensure that the frames were sufficiently differ-
ent to make registration a nontrivial task, pairs were selected such that the video
frames in each pair were acquired a minimum of 20 seconds apart. One image from
each pair was manually rotated, translated, and perspective warped in an image
editing program until it was aligned with the other image. The transformation

Table 2. The results of the natural registration task described in Sect. 3.2. Each algo-
rithm was evaluated in terms of success rate, defined as the percentage of image pairs
for which the algorithm found enough matches to compute a homography, and transfor-
mation error, defined as the mean distance between a grid of points transformed by the
ground truth homography and the same points transformed by the recovered homog-
raphy. The algorithms are as follows: (i) SIFT key point detection and SIFT feature
description; (ii) SURF detection and description; (iii) SURF with key points filtered
by a deep learned mask; (iv) SURF with a deep learned mask and with the Hessian
threshold for detection reduced to zero; (v) AGAST feature detection, SIFT feature
description and subsequent refinement of matches with grid-based motion statistics
(GMS); and (vi) the AGAST/SIFT/GMS pipeline with the addition of a deep mask.

Algorithm Transf error (pixels) Success rate

SIFT 97.1 ± 34.6 72.72%

SURF 158.9 ± 143.9 100.00%

SURF + Deep Filter 223.5 ± 215.7 40.90%

SURF (0 threshold) + Deep Filter 118.9 ± 57.0 100.00%

AGAST + SIFT + GMS 45.6 ± 21.2 100.00%

AGAST + Deep Filter + SIFT + GMS 55.1 ± 32.1 100.00%
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matrix corresponding to the concatenation of these editing operations was saved
as the ground truth homography for that image pair.

Several feature matching and algorithms were executed on each image pair in
an effort to recover the ground truth homography from visual correspondences.
Each algorithm was evaluated in terms of success rate and transformation error,
as defined in Sect. 3.1. The results are summarized in Table 2 and Fig. 4. Standard
SIFT and SURF approaches perform poorly. SIFT fails to produce enough key
point matches to produce a homography in over one quarter of cases. SURF
is able to generate a homography more frequently, but the homographies that
it produces have a high transformation error relative to the ground truth. One
might expect that applying the deep learned vessel segmentations as a key point
mask would help eliminate matches to visual distractors and increase match
quality. However, applying deep filtering to SURF further reduces the number of
available features, and lowering the Hessian threshold to increase the number of
SURF features does not lead to better matches. Matching with GMS consistently
produces the best registrations.

Adding a deep filter to GMS matching slightly increases the average trans-
formation error. This is the result of images in which there is a single, linear
blood vessel. As the deep filter limits key points to those that lie on a blood
vessel, it causes the set of matched points in such images to be almost co-linear,
and even slight deviations in the positions of matched key points can have a
large effect on the computed homography if they are orthogonal to the axis of
the lone blood vessel.

4 Conclusion

Prior research into the construction of panoramic maps of the placenta has made
great strides in processing ex vivo placental images. Given that the ultimate
goal is to use this technology intraoperatively, the next step is to extend existing
techniques to handle the more complicated domain of in vivo images. However,
the most common technique for panorama construction in the existing literature,
nearest neighbor matching of SIFT and SURF features, gives unsatisfactory
results even for very trivial registration tasks involving in vivo images. Feature
matching with in vivo placental images is difficult because placental images lack a
rich variety of visually distinct features. The appearance of one blood vessel on a
placenta is not necessarily significantly different from the appearance of another
blood vessel a centimeter away, and this leads to a high rate of false matches.
In this work, we demonstrate that the paucity of visually distinct features is
not necessarily a limiting factor in the registration of in vivo images. By using
matching algorithms that impose a structure on matched elements – in this case
a grid-based locality constraint – it is possible to significantly improve the quality
of feature matches and the resulting image registrations.
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