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Abstract. Global brain network parameters suffer from low classifica-
tion performance and fail to provide an insight into the neurodegener-
ative diseases. Besides, the variability in connectivity definitions poses
a challenge. We propose to represent multi-modal brain networks over
a population with a single 4D brain tensor (B) and factorize B to get
a lower dimensional representation per case and per modality. We used
7 known functional networks as the canonical network space to get a
7D representation. In a preliminary study over a group of 20 cases, we
assessed this representation for classification. We used 6 different con-
nectivity definitions (modalities). Linear discriminant analysis results in
90–95% accuracy in binary classification. The assessment of the canon-
ical coordinates reveals Salience subnetwork to be the most powerful in
classification consistently over all connectivity definitions. The method
can be extended to include functional networks and further be used to
search for discriminating subnetworks.
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1 Introduction

Brain has been known to be a network of cortical regions, yet until the rela-
tively recent advances in magnetic resonance imaging (MRI), it was not possible
to build network models of in-vivo brain. Current functional MRI (fMRI) and
diffusion MRI (dMRI) technologies allow us to delineate functional (fNET) and
structural network (sNET) models, collectively called the brain connectome, at
a cortical parcellation scale. The analysis of these network models has the poten-
tial of shedding light on how the brain works, as well as the cause and progress
of neurodegenerative diseases.
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The majority of the analysis approaches has been focused on the changes in
the global network features, such as the clustering coefficient, the average path-
length, the small-worldness index, etc. Despite their high sensitivity to abnor-
malities, these features are poor in classification and/or staging due to their
global nature [1]. A more promising approach is to assess the changes in sub-
networks of the connectome, towards which purely statistical techniques, such as
Network Based Statistics (NBS) [2], have gained popularity. Another concern is
the lack of standardized techniques for building connectomes, which introduces
an unavoidable uncertainty on the derived conclusions.

We propose to use the powerful tensor factorization techniques to simulta-
neously address the aforementioned problems, namely sub-network based and
multi-modal analysis of the connectome. We introduce the Brain Tensor (B-
tensor) as a multi-dimensional multi-modal connectome representation and fac-
torize it in terms of apriori known canonical subnetworks. In a preliminary study
with Alzheimer’s Disease patients, we demonstrate that the factorization coef-
ficients not only have high discrimination power in a binary classification task,
but also provide an insight into the most affected/discriminative canonical sub-
networks. We conclude with a discussion on the potential extensions of B-tensor
factorization.

2 Background

Initial efforts on network analysis have focused on global, and local character-
istics in order to identify components of networks, and to assess similarities or
differences between networks. Utilizing global features such as clustering coef-
ficients, average path length, small-worldness is useful when a given network is
compared with a reference network, or to examine differences of neural networks
from different species. Briefly, global features look at the network as a whole
and fail to identify local difference. On the other hand, local features such as
local clustering coefficient, shortest path etc. have shown their significance when
properties of individual components are examined [3].

NBS has been proposed to overcome the limitation of global assessment. It
identifies statistically significantly different edges between two classes of net-
works. The identified edges are used to detect discriminative subnetworks. The
distribution of sizes of these subnetworks is used to assign a p-value to the sub-
network identified as discriminative between the positive classes. NBS is purely
statistical, oversees the a priori known structure of brain.

Karahan et al. utilized coupled tensor factorization to fuse EEG, FMRI, and
DTI data represented in 3rd, 2nd, and 3rd order tensors, respectively. Coupling
is enforced over temporal and spatial domains for EEG/FMRI and over sub-
jects for EEG/DTI. Two different representation is used for EEG where first
one is time-varying and the other one is subject-varying EEG [4]. However, in
this research, a priori is not used and multimodal structural and functional rep-
resentation of brain networks have not been considered. Utilized tensors do not
represent network sets row signals/spectra with a spatial and/or subject dimen-
sion. Williams et al. generate a 3rd order tensor model by using a trial-structured
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neural data with dimensions represent neurons, time and trials. With the help
of TCA (Tensor Component Analysis), they have managed to decompose this
tensor into three interpretable factors (neuron factors, temporal factors, trial
factors). In addition, TCA has been utilized for dimension reduction [5].

We propose a 4th order B-tensor that represents multi-modal networks
(structural and/or functional) over a population. A modality is defined as a
network construction method independent from data source (i.e. structural or
functional data). Decomposition of B-tensor over a priori known subnetwork is
studied.

3 Method

3.1 B-Tensor Construction

For a multi-modal (R-modal) connectome defined over I × J nodes (cortical
parcels) for a population of K cases, the 4th order B-tensor (B ∈ R

K×I×J×R) is
defined. In this work, we used 6 variants of sNET definitions, hence R = 6, over
a population of 20 cases, hence K = 20. We used the 148-parcel Destrieux atlas
[6], hence I = J = 148.

Following the co-registration of T1-weighted MRI and dMRI volumes, the T1-
weighted MRI volume is parcellated using FreeSurfer1, into 148 parcels which
are used to define the 148 nodes ({Vi}) of the sNETs. Diffusion tensor (DT)
volume is computed from diffusion weighted MRI (DWI) using an in-house
software built upon the MITK platform2. Fiber tracts are constructed using
the 4th-order Runge-Kutta (RK4) deterministic tractography algorithm [7] with
minimum fractional anisotropy (FA) set to 0.15, stepsize set to 0.7 mm (≈ half
the voxel size), minimum fiber length set to 14 mm and the maximum curvature
set to 35◦. RK4 was initiated from 30 randomly selected seeds per voxels with
FA > 0.15.

In order to construct the sNETs, each fiber ({fk}) is associated with the
nodes in the vicinity of its end-points using a symmetric 3D Gaussian kernel
with a standard deviation (σ) of 0.155 mm, centered at the fiber endpoints. σ is
optimized by minimizing the integrated square error (ISE), as described in [8].
The numeric volumetric integral of the Gaussian kernel positioned at one of the
end points of fk, within the node Vi (and up to a radial distance of 2σ) is used
as the fiber-parcel/node association and is denoted by Wik.

Six different sNETs are constructed using 6 different structural connectivity
(network edge weight) definitions, Cij , between pairs of nodes, (Vi, Vj), as follows:

Cij =
∑

k

WikWjk : Weighted Connectivity (1)

1 https://surfer.nmr.mgh.harvard.edu/.
2 http://mitk.org/wiki/MITK.

https://surfer.nmr.mgh.harvard.edu/
http://mitk.org/wiki/MITK
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CN
ij =

2 × Cij

V
Vi + Vj

: Normalized Connectivity (2)

Cstat
ij =

1
Cij

∑

k

WikWjk × Ψ(FA(fk(t))) , ∀Cij �= 0

FA-based Connectivities (3)

where V is the voxel volume in mm3, Vi and Vj are the volumes of corresponding
parcels, and Ψ represents the statistics operator (∈{min, max, mean, median})
operating over the fiber parametrized by t.

3.2 B-Tensor Factorization

The CP factorization of B is given as [9,10],

Bk,i,j,r ≈
Q∑

q=1

Ak,qCi,qDj,qEr,q (4)

where the decomposition is performed over Q (free parameter) factors. Each
one of the components represents the factorization of a single dimension of B
over the Q factors. While A and E are associated with the individual cases and
the sNET definitions, C and D are solely associated with the network topology.
Hence, we combined C and D into a single component that represents network
topologies across Q factors, while A and E are merged to represent per case per
connectivity (per-modality) represented in terms of those network topologies.
Namely,

Bk,i,j,r ≈
Q∑

q=1

Mk,r,qGi,j,q =
Q∑

q=1

(∑

s

Ak,sEr,sIq,s
)( ∑

s

Ci,sDj,sIq,s
)

(5)

where Iq,s = δqs, i.e. the identity matrix and s ∈ {1, 2, · · · , Q}. This allows
us to decouple the network topology from the cases and the modalities (con-
nectivity definitions). Thus, we can work with case and modality independent
network topologies, namely the canonical subnetworks, G. With a further simpli-
fication, we constrained G to be a binary valued tensor representing the apriori
known (fixed) canonical subnetworks. Following Yeo et al., we defined 7 canon-
ical subnetworks, namely the visual, the somatomotor and auditory, the dorsal
attention, the salience, the limbic, the frontoparietal and the default mode sub-
networks [11]. They are expressed in terms of the node definitions of B and
numbered from 1 to 7, respectively. G is assumed known and fixed for the rest.
M, on the other hand, represents the factorization coefficients over the canoni-
cal dimensions (subnetworks). This gives us 7D representations per case and per
modality as Fk,r ∈ R

7.
Following [12], Eq. 5 can be matricised as

B(1,4;2,3) = MT
(3;1,2)G(3;1,2) (6)
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where M(3;1,2) = M(3) = (E � A)T and G(3;1,2) = (G(3) = D � C)T .3 Fixing
G as described above, we can solve for M using any matrix inversion technique,
such as QR decomposition, to get M(3) = G−T

(3) B
T
(1,4;2,3). G

−T
(3) is computed once

and used throughout the analysis. Finally, the computed M(3) is tensorized back
to its original form to get the estimated M as a 3rd order tensor representing
per case, per connectivity unconstrained real-valued factorization coefficients.

4 Experiments

4.1 Data

T1-weighted MRI and dMRI images were acquired by using a Philips Achieva
3.0T X scanner with a 32-channel head coil from 7 AD patients and 13 con-
trols with written consent. The AD patients were diagnosed by means of stan-
dard clinical evaluation tests by a team of expert neurologists. We used 3D
FFE (Fast Field Echo) pulse sequence with multi-shot TFE (Turbo Field Echo)
imaging mode for T1-weighted MRI. The acquisition parameters were TE/TR
= 3.8ms/8.3ms, flip-angle = 8◦, SENSE reduction 2 (Foot-Head), FOV =
220(RL)×240(AP ) mm2, voxel size = 1.0×1.0×1.0 mm3 and number of slices =
180. dMRI were acquired with a maximum gradient strength of 40 mT/m, and
200 mT/m/ms slew rate, using a single-shot, pulse-gradient spin echo (PGSE),
echo planar imaging (EPI) sequence. The acquisition parameters were FOV=
200×236 mm2, 2.27 mm isotropic voxel size, 112×112 reconstruction matrix, 71
slices and TE/TR = 92ms/9032ms. 120 diffusion weighting gradient directions
were used at various b-values between 3000 − 0 s/mm2.

4.2 Analysis and Results

The separation of the AD patients and the controls in the 7D canonical space
of subnetworks was assessed by Linear Discriminant Analysis(LDA) [13]. Binary
classifiers are trained for each one of the 6 connectivity definitions in the cor-
responding 7D space (Fr) and the training accuracies are measured. We also
computed the unit normal of separating hyperplanes, i.e. the canonical axis,
along which the separation of the two groups is maximized. AccB represents
the binary classification accuracy. We also trained a separate binary classifier
using LDA on the standard global network parameters (global clustering coeffi-
cients [14], average shortest path length [15], small-worldness index [16]). Accglb
represents the classification accuracy using these global parameters. The results
are given in Table 1 together with the corresponding canonical axes for the B-
tensor analysis. All accuracies were above 90%, with the weighted and normalized
connectivity definitions being the best performing ones for B-tensor. The corre-
sponding classification accuracies using global connectome features in LDA are
between 75%–90%.

3 � denotes the Khatri-Rao product.
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Table 1. Classification accuracies of LDA classifier for different connectivity definitions
(modalities) and the associated canonical axes.

Conn Canonical Axis AccB Accglb

Cij [0.012 −0.010 −0.377 −0.887 0.211 −0.159 −0.022] 0.95 0.8

CN
ij [−0.326 −0.130 −0.530 −0.636 0.426 0.054 −0.073] 0.95 0.85

Cmin
ij [−0.224 −0.064 −0.351 −0.509 0.401 0.448 −0.446] 0.90 0.75

Cmax
ij [−0.352 0.231 −0.345 −0.703 0.299 0.056 0.340] 0.90 0.90

Cmean
ij [−0.352 −0.287 −0.298 −0.714 0.347 0.046 0.215] 0.90 0.80

Cmedian
ij [−0.333 −0.296 −0.286 −0.741 0.347 0.0461 0.215] 0.90 0.75

The components of the canonical axes unit vectors provide an insight with
regard to the relevance of the corresponding canonical subnetwork in discrim-
inating the AD patients from the controls. The higher the absolute value of
a component of a canonical axes, the more important that canonical dimen-
sion (subnetwork) is in discriminating the two groups. Figure 1 shows the mean
and standard deviation of the magnitude of each component computed over all
modalities.

In order to compare the connectivity definitions with regard to their discrim-
inating power, we ordered the canonical subnetworks based on the mean values
given in Fig. 1 and computed the classification accuracy of LDA using the top
K (∈ [1, 7]) canonical subnetworks, separately for each connectivity definition.
Figure 2 shows the results. In general, increasing the dimension of the canoni-
cal space improves the accuracy, except for the 2D case (i.e. using the dorsal

Fig. 1. Mean and standard deviations of the canonical axes’ components computed
over all modalities. The 4th subnetwork (Salience subnetwork) is consistently observed
to be the most important one.
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Fig. 2. Accuracy of LDA for all modalities using top K (∈ [1, 7]) canonical dimensions
(subnetworks). The weighted connectivity definition performed the best almost unan-
imously where as the FA-statistics based connectivities performed relatively poorly in
general.

attention and the salience networks only). However, the weighted connectivity
definition performed the best almost unanimously where as the FA-statistics
based connectivities performed relatively poorly in general.

5 Discussion

The B-tensor factorization allows us to represent the multi-modal (multi-
connectivity) brain connectome in a canonical space of subnetworks with an
intuitive interpretation. The AD patients are clearly separated from the controls
in this space. The salience network is consistently observed to be the most impor-
tant subnetwork among the 7 subnetworks used. The dorsal attention and the
limbic subnetworks seem to be the second most important networks whereas the
fronto-parietal network is the least important one. Although this result seems to
be counter intuitive as the memory loss (primary function of limbic subnetwork)
is the major symptom of AD, there is also evidence supporting our findings
[17]. Furthermore, the AD cases in our dataset are described as early stage AD
by our collaborating neurologists, which may also explain the observed impor-
tance of the salience subnetwork. These preliminary results are limited by the
fixed definition of the canonical subnetworks. However, the B-tensor factoriza-
tion framework can be utilized for searching for discriminative subnetworks. This
would provide a further insight into the causes and progression mechanism of
neurodegenerative diseases.

The assessment of different connectivity definitions within the aforemen-
tioned canonical space reveals that the weighted and normalized connectivity
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definitions’ discriminative power outperforms those of FA-statistics based con-
nectivities. Although it has been discussed that the FA is an indirect measure of
the quality of communication between cortical regions, these preliminary results
suggest the opposite. This is potentially due to well-known deficiencies of dif-
fusion tensor model that underlies the FA measurements. A similar assessment
using the microstructural integrity of the fiber tracts by means of compartment
models, such as NODDI [18], can potentially show a higher discriminative power.

The continuous representation of brain connectome in the canonical space can
also be used for staging the disease progression. A regression analysis between
this low-dimensional representation and clinical test results should be carried
out, which is left for future work. Current study is limited to different sNET
definitions, yet the framework is suitable to include fNETs in the B-tensor simul-
taneously with sNETs. Such a multi-modal analysis may uncover non-trivial
relations between the structural and functional changes during the course of the
disease, by means of the correlations of different modalities as represented in
the canonical space. A fundamental limitation of the present study is the small
dataset size which might have caused an overfitting of the LDA classifier. Further
experiments on a larger dataset are due to arrive at stronger conclusions.

6 Conclusion

We have presented a novel tensor based multi-modal representation of brain
connectome and described how it can be factorized to get a continuous, low-
dimensional representation in a canonical space offering an intuitive understand-
ing of neurodegenerative diseases’ causes and progression. Preliminary results
with a small cohort of AD patients and controls revealed high classification accu-
racy and identified the salience subnetwork as the most discriminative network
component among the 7 known.

Future work will include the experiments with a larger cohort, the extension
of the model to joint analysis of structural and functional networks, the assess-
ment of the canonical representation as a disease staging/monitoring biomarker
and developing a canonical subnetwork search strategy optimized for classifica-
tion/regression accuracy.
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