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Abstract. We present two related methods for deriving connectivity-
based brain atlases from individual connectomes. The proposed meth-
ods exploit a previously proposed dense connectivity representation,
termed continuous connectivity, by first performing graph-based hier-
archical clustering of individual brains, and subsequently aggregating
the individual parcellations into a consensus parcellation. The search
for consensus minimizes the sum of cluster membership distances, effec-
tively estimating a pseudo-Karcher mean of individual parcellations. We
assess the quality of our parcellations using (1) Kullback-Liebler and
Jensen-Shannon divergence with respect to the dense connectome rep-
resentation, (2) inter-hemispheric symmetry, and (3) performance of the
simplified connectome in a biological sex classification task. We find that
the parcellation based-atlas computed using a greedy search at a hierar-
chical depth 3 outperforms all other parcellation-based atlases as well as
the standard Dessikan-Killiany anatomical atlas in all three assessments.

1 Introduction

The ability to quantify how the human brain is interconnected in vivo has opened
the door to a number of possible analyses. In nearly all of these, brain parcel-
lation plays a crucial role. Variations in parcellation significantly impact con-
nectome reproducibility, derived graph-theoretical measures, and the relevance
of connectome measures with respect to biological questions of interest [16]. A
natural approach is then to use individual densely sampled connectomes to drive
the parcellation directly, leading to a more compact, connectivity-aware set of
brain regions and resulting graph, as done in e.g. [10]. A comprehensive review
of parcellation methods and their effects on the derived connectome quality is
given in [17]. Because individual connectivity data is at once very informative
and highly redundant, there is a great flexibility in how parcels can be derived
from dense, highly resolute graphs. It is possible for example to derive (1) a uni-
fied population-based atlas, (2) individual-level parcellations with cross-subject
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label mapping, or (3) individual parcellations with no inter-subject label corre-
spondence. While the first approach is appealing for its simplicity and ease of
interpretation, the second and third may enable the researcher to reveal some
individual aspect of the connectome that is lost in the aggregate atlas.

In this work, we attempt to bridge these three approaches by first construct-
ing maximally flexible hierarchical parcellations, and then finding a unifying set
of labels and parcels to maximize individual agreement. We use the a contin-
uous representation of a brain connectivity [8] as our initial dense connectome
representation. Continuous connectivity is a parcellation-free representation of
tractography-based, or “structural” connectomes that is based on the Poisson
point process. Once individual parcellations are computed, we obtain a group-
wise parcellation using partition ensemble algorithm. We access quality of the
resulting parcellations in three ways. (1) We use the continuous connectome
framework to compare parcellation-approximate and exact edge distribution
functions. (2) We compare performance of the resulting graphs on a gender
classification task. (3) We also show that without any explicit knowledge of
brain geometry and based solely on graph connectivity we obtain comparatively
symmetric parcellations.

2 Methods

2.1 Continuous Connectome

The continuous connectome model (ConCon) treats each tract as an observation
of an inhomogeneous symmetric Poisson point process with the intensity function
given by

λ : Ω × Ω → R
+, (1)

where Ω denote union of two disjoint toplogically spherical brain hemispheres,
representing cortical white matter boundaries. In practice, ConCon uses cortical
mesh vertices as nodes of connectivity graph. From such a representation, a
“discrete” connectivity graph could be computed from any particular cortical
parcellation P . We follow definitions from [8] and call P = {Ei}Ni=1 a parcellation
of Ω if E1 . . . Ek ⊆ Ω such that ∪iEi = Ω, and N is the number of parcels (ROIs).
Edges between regions Ei and Ej can then be computed by integration of the
intensity function:

C(Ei, Ej) =
∫∫

Ei,Ej

λ(x, y)dxdy, (2)

Due to properties of the Poisson Process, C(Ei, Ej) is the expectation of the
number of observed tracts between Ei and Ej . In the context of connectomics,
this is the expected edge strength.

2.2 Graph Clustering

Once we obtain all individual continuous connectomes, we partition each inde-
pendently into a set of disjoint communities. For graph clustering we use the
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Louvain modularity algorithm [1], as it has shown good results in multiple neu-
roimaging studies [5,7,9,12]. This algorithm consist of two steps. The first step
combines locally connected nodes into communities, while the second step builds
new meta graph. The nodes of the meta-graph are communities from the previ-
ous step, and the edges are defined as the sum of all inter-community connections
of the new nodes. The algorithm in [1] cycles over these steps iteratively, con-
verging when further node clustering leads to no increase in modularity. We
follow the hierarchical brain concept [7], repeating the clustering procedure iter-
atively. After the initial parcellation, we further cluster each individual parcel as
an independent graph. In this work, we repeat the process three times. For each
(i’th) continuous connectome this procedure yields a three-level hierarchically
embedded partition: P I

i , P
II
i , P III

i , (see Fig. 1).

Fig. 1. Adjacency matrix of a sample continuous connectome. Rows and columns are
reordered according to partition of the third hierarchical level. Boxes of different color
represents clusters of different hierarchical levels. P I clusters are obtained first, next
we reapply clustering on each detected P I cluster and obtain P II. This is repeated once
more to obtain P III (Color figure online)

2.3 Consensus Clustering

In order to obtain a unified parcellation for all subjects, we use consensus cluster-
ing. The concept was developed for aggregating multiple partitions of the same
data into a single partition. We define the average partition over all individual
partitions {Pi} as:

P̄ == argminP

∑
i

d(P, Pi), (3)
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where P̄ is used to denoted desirable average partition, K is a number of averaged
partitions, d(Pi, Pj) is a distance measure between two partitions and we want
to minimize average distance from P̄ to all given partitions Pi. All partitions are
represented by a vector of length M , where M is a number of clustered objects
(vertices of a graph in our case). It contains values from 1 up to N , where N
is a number of clusters (parcels). This task is generally NP complete [14], but
there are many approximate algorithms. We use two approaches: Cluster-based
Similarity Partitioning Algorithm (cspa) [11] and greedy algorithm from [2].

CSPA defines a similarity between data points based on co-occurrence in a
same cluster across different partitions, and then partitions a graph induced by
this similarity. Specifically, given multiple partitions P1, . . . PK of a data points
x1, . . . xM . One can define similarity between points xi, xj as follow:

S(xi, xj) =
K∑

k=1

δ(Pk(xi), Pk(xj)), (4)

Here δ is Kroneker delta. Thus S(xi, xj) is just number of partitions in which
points xi and xj were in the same cluster. Next we build a graph, with nodes
correspond to data points and edge between node xi and xj is equal to S(xi, xj).
We the partition this graph into communities using some clustering algorithm
and the resulting partition is our clustering consensus partition.

Another way to find such average clustering is to optimize loss function given
by Eq. 3.

The authors of [2] propose a greedy approach (Hard Ensemble - HE). Given
multiple partitions P1 . . . PK it combines them iteratively, first it finds average
of P̄1,2 = minP̄ (d(P̄ , P1) + d(P̄ , P2)), next average of P1,2 and P3 and so on.
As a measure of distance the authors take the average square distance between
membership functions:

d(Pi, Pj) =
1
N

∑
k=1...N

||pki − pkj ||2, (5)

Exclusively for this definition we use another way to encode object’s member-
ships: Pi is a matrix of size M ×N (number of objects times number of clusters)

Pm,n
i =

{
1 if m’th object belongs to n’th cluster
0 otherwise.

(6)

In Eq. 5 pki and pkj are kth rows of memberships matrices Pi and Pj respectively.
They correspond to membership vector of the kth object. Since we are looking
for disjoint clusters, only a single element of such row vector is equal to 1. This
representation is defined up to any column permutation π of matrix P , thus the
optimization procedure is done subject to all possible column permutations.
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2.4 Comparison Metrics

Once we find individual partitions and combine them into an average partition,
we want to access their quality. We use two different approaches.

First, we compare representation strength of different parcellations by mea-
suring distance between original λ(x, y) and its piece-wise approximation given
by:

γ(x, y) =
1

|Ei||Ej |C(Ei, Ej), (7)

where x ∈ Ei and y ∈ Ej . Natural way to compare two statistical distributions
is to measure distance between their probability density functions, we will use
Kullback-Leibler divergence [4]. For two probability distributions with densities
λ(x) and γ(x) the KL divergence is:

KL(λ, γ) =
∫ ∞

−∞
λ(x) log

λ(x)
γ(x)

dx, (8)

It takes values close to 0 if two distributions are equal almost everywhere. Similar
but symmetrized version of KL divergence is Jensen-Shannon divergence [6].
Again for two probability distributions with densities λ(x) and γ(x) it is given
by:

JS(λ, γ) =
1
2
(KL(λ, r) + KL(γ, r)), (9)

where r(x) = 1
2 (λ(x) + γ(x)).

Second, we compare performance of different parcellations on a gender clas-
sification task. We use Logistic Regression model with (small) l1 regularization
on a vectors of edge weights (the upper triangle of adjacency matrix excluding
diagonal). Classification performance is measured in terms of ROC AUC score,
which is typical for binary classification tasks.

Finally, in order to quantify goodness of consensus clustering and access
hemisphere symmetry we use Adjusted Mutual Information [15]. It measures
similarity between two partitions, with value 1 corresponds to identical parti-
tions and values close to zero for partitions that are very different. Given set
X of n elements, X = {x1, x2, . . . xn} let us consider two partitions of X:
U = {U1, U2, . . . Ul} and V = {V1, V2, . . . Vk}. These partitions are strict (or
hard):

k⋂
j=1

Vj =
l⋂

i=1

Ui = ∅

and complete:
k⋃

j=1

Vj =
l⋃

i=1

Ui = X
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We can construct the following l × k contingency table:

U, V V1 V2 . . . Vk

∑k
j=1 sij

U1 s11 s12 . . . s1k s1

U2 s21 s22 . . . s2k s2
...

...
...

. . .
...

...

Ul sl1 sl2 . . . slk sl∑l
i=1 sij s1 s2 . . . sk

Here sij denotes a number of common objects between Ui and Vj :

sij =
∣∣ Ui

⋂
Vj

∣∣
then Mutual Information is given by:

MI =
l∑

i=1

k∑
j=1

P (i, j) log
P (i, j)

P (i)P ′(j)
, (10)

where P (i) is the probability of a random sample occurring in cluster Ui, P ′(j)
is the probability of a random sample occurring in cluster Vj :

P (i) =
si

n
, P ′(j) =

sj
n

and P (i, j) - probability of an object occurs in Ui and Vj simultaneously:

P (i, j) =
sij
n

Adjustment scheme as proposed by Hubert and Arabie [3] has the following
general form:

Adjusted Index =
Index − Expected Index

Max Index − Expected Index
(11)

Using AMI we access ensemble goodness (how good clustering ensemble algo-
rithm combines multiple partitions) using modified 3:

Ensemble goodness =
K∑
i

AMI(P̄ , Pi), (12)

We compute parcellation symmetry by comparing hemisphere parcels (labels):

Symmetry = AMI(P̄LH, P̄RH). (13)
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3 Experiments

3.1 Data Description

We use construct continuous connetomes of 400 subjects from the Human Con-
nectome Project S900 release [13] following [8]. We use an icosahedral spherical
sampling, at a resolution of 10242 mesh vertices per hemisphere. We used Dipy’s
implementation of constrained spherical deconvolution (CSD) to perform prob-
abilistic tractography. Prior to clustering, we exclude all mesh vertices that were
labeled by FreeSurfer as corpus callosum or cerebellum.

3.2 Experimental Pipeline

Our experiments are summarized as follows:

1. For each subject we reconstruct its Continuous Connectome.
2. For each Continuous Connectome we iteratively run Louvain clustering algo-

rithm, as described above. Subgraphs of having less then 1% of original graph
vertices were not divided.

3. Next we aggregate individual subject partitions and obtain consensus clus-
tering. Aggregation was done over 400 HCP subjects. Further, after finding
the optimal parcellation, we obtain two parcellations based on two disjoint
sets of 200 HCP subjects in order to compute reproducibility.

4. We aggregate partitions of the same level (I-II-III) using CSPA and HE.
5. We compare obtained partitions between themselves and with FreeSurfer’s

Desikan-Killiani parcellation using Kullback-Leibler and Jensen-Shannon
divergence. We compute goodness of an ensemble and parcellation symmetry
using AMI.

6. We compare performance of simplified connectomes on a binary classification
task using Logistic Regression with l1 penalty. Classification results are mea-
sured in terms of ROC AUC score, with averaging over 10 cross-validation
folds.

3.3 Results

Table 1 represent all comparison results. First we can see that CSPA algorithm
failed to find good clustering ensemble which result in poor classification perfor-
mance and high KL and JS divergences. Greedy algorithm performed on P III on
the other hand outperforms standard Desikan atlas across all comparison metrics
(except number of parcels, 68 versus 83). Surprisingly, greedy ensemble of second
level partition (P II) performs comparatively with Desikan, despite having twice
as lower number of parcels (30 versus 68).

Another interesting property that we get automatically is parcellation sym-
metry. Our clustering algorithm known nothing about brain topology (all infor-
mation was contained in graph connectivity), still reconstruct parcellations which
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Table 1. All results are rounded to 2 significant digits. Where it possible results are
reported with standard deviation. Best result in each row is colored. KL, JS divergences,
lower is better; binary Gender Classification was measured in terms of ROC AUC
score, higher - better; Ensemble goodness and Hemisphere symmetry were measured
using AMI, Ensemble goodness is an average AMI between consensus partition and all
individual partitions, higher - better.

cspa P I cspa P II cspa P III HE P I HE P II HE P III DKT

KL 1.22 ± .07 1.18 ± .07 1.15 ± .07 1.16 ± .07 .86 ± .05 .66 ± .04 .83 ± .05

JS .20 ± .00 .19 ± .00 .19 ± .00 .20 ± .00 .17 ± .00 .14 ± .00 .16 ± .00

Gender Classification .63 ± .04 .64 ± .04 .69 ± .03 .64 ± .03 .75 ± .03 .86 ± .02 .81 ± .03

Hemisphere symmetry .15 .24 .32 .26 .55 .66 .64

Ensemble goodness .47 ± .06 .40 ± .02 .35 ± .00 .53 ± .05 .64 ± .02 .70 ± .01 −
Number of ROIs 5 7 8 7 30 83 68

are highly symmetrical. For standard Desikan atlas hemisphere symmetry is 0.64,
and for our best parcellation this value even higher (0.66), and still remains quite
high for second level partition (0.55).

Finally we check if our best ensemble parcellation, which combines 400 indi-
vidual partitions is stable. We split 400 subjects into 2 groups of 200 subjects
and independently combine their partitions. We compare resulting parcellations:
P̄1,200 and P̄201,400 between themselves and with original P̄ (which is an ensemble
of all 400 subjects) again using Adjusted Mutual Information. Both P̄1,200 and

Fig. 2. Left column: Desikan-Killiany parcellation. Right column: HE P III parcellation.
Lateral and Medial views, left hemisphere.
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P̄201,400 shows AMI value greater than 0.80 (0.83 and 0.82 respectively) when
compare with P̄ , they also highly similar between themselves (Fig. 2).

4 Conclusion

We have presented an approach for generating unified connectivity-based human
brain atlases bases on consensus clustering. The method is based on finding a
pseudo average over the set of individual partitions. Our approach outperforms
standard a anatomical parcellation on several important metrics, including agree-
ment with dense connectomes, improved relevance to biological data, and even
improved symmetry. Because our approach is entirely data driven an requires no
agreement between individual parcellation labels, it combines both the flexibility
of individual parcellations and the interpretability of simple unified atlases.
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