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Abstract. The ability to uniquely characterize individual subjects
based on their functional connectome (FC) is a key requirement for
progress towards precision neuroscience. The recent availability of dense
scans from individuals has enabled the neuroscience community to inves-
tigate the possibility of individual characterization. FC fingerprinting
is a new and emerging problem where the goal is to uniquely charac-
terize individual subjects based on FC. Recent studies reported near
100% accuracy suggesting that unique characterization of individuals is
an accomplished task. However, there are multiple key aspects of the
problem that are yet to be investigated. Specifically, (i) the impact of
the number of subjects on fingerprinting performance needs to be stud-
ied, (ii) the impact of granularity of parcellation used to construct FC
needs to be quantified, (iii) approaches to separate subject-specific infor-
mation from generic information in the FC are yet to be explored. In
this study, we investigated these three directions using publicly avail-
able resting-state functional magnetic resonance imaging data from the
Human Connectome Project. Our results suggest that fingerprinting per-
formance deteriorates with increase in the number of subjects and with
the decrease in the granularity of parcellation. We also found that FC
profiles of a small number of regions at high granularity capture subject-
specific information needed for effective fingerprinting.
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1 Introduction

Resting state functional connectivity (RSFC) studies that estimate connectiv-
ity based on blood-oxygen-level-dependent (BOLD) signal measured using func-
tional magnetic resonance imaging (fMRI) have revealed many principles of brain
function [4,5]. Most of the existing studies made inferences about RSFC at a
group level, by co-registering individual scans to a standard template, and found
that such inferences are reliable [11]. While group-level inferences inform us of
the generic principles, they obscure principles specific to individual subjects that
are essential for characterizing brain function in health and disease. Recent avail-
ability of ‘dense’ fMRI scans from individuals (e.g., Human Connectome Project
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(HCP) data [12], Midnight Scan Club (MSC) [7], and MyConnectome dataset
[8]) provide a tremendous opportunity to study idiosyncratic properties of brain
function and make progress towards ‘precision neuroscience’ [10].

Functional connectome fingerprinting, where the goal is to identify individ-
uals using subject-specific RSFC, has been explored using the above datasets
that constitute dense scans from individuals [6,9]. Specifically, given a set of N
reference fMRI scans, one from each of the N subjects, and a new target fMRI
scan from one of the same N subjects, the goal is to identify the subject by
‘matching’ RSFC of the target scan with that of the reference scans. As RSFC
is used to match the reference and the target scans, we refer to it as a functional
fingerprint. There are different approaches to using RSFC and their effect on the
accuracy of fingerprinting has been studied. For instance, Finn et al. [6], using
126 subjects from HCP, reported a fingerprinting accuracy in the range of 92%–
94% while using whole-brain RSFC and 98–99% using a frontoparietal-based
RSFC. In another study, using 100 unrelated subjects from HCP, Amico and
Goni [3] observed that by performing principal component analysis (PCA) on
whole-brain RSFC and using the resultant principal components for matching,
the accuracy increased from 94% to 98%. Xu et al. [15] studied the reliability
of boundaries drawn between functional areas delineated using spatial gradients
(the approach is discussed elaborately in [14]) and reported success rate of up to
99% using 30 subjects.

These near 100% success rates may lead one to conclude that fingerprinting
is not only a relatively easy problem, but also a solved problem with no room for
progress. However, this is far from reality. Note that the underlying hypothesis
that drives the fingerprinting methodology is that RSFC instances from the same
subject lie in close proximity, segregated from other subjects’ RSFC, in some
high-dimensional space. When a small number of subjects are sampled from a
population, the RSFCs from one subject may be well separated from that of
others in the high-dimensional space. However, when many more subjects are
sampled from a population, this high-dimensional space may become cluttered
with RSFCs from different subjects, where RSFCs from different subjects may
look more similar than the RSFCs from the same subject, and as a result hurt
the overall fingerprinting performance. This aspect of fingerprinting is yet to be
studied.

In addition, the impact of granularity of the parcellation used for computing
RSFC on fingerprinting accuracy is yet to be investigated. A parcellation of the
brain is expected to capture functionally distinct areas at a given level of gran-
ularity, often indicated as the number of parcels. While subject-specific RSFC is
desired for fingerprinting purpose, the granularity at which this subject-specific
information becomes available is not known.

Subject-level RSFC contains both generic and subject-specific information.
Separating out subject-specific information from generic information is crucial
for determining what aspects of RSFC are relevant for fingerprinting. Finn et
al.’s approach [6] of using RSFC within different groups of brain regions is one
approach. Their underlying hypothesis is that the subject-specific signatures are
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present within the RSFC of different region groups. One hypothesis, that is not
yet explored, is that an RSFC profile of one or small number of regions could be
used for fingerprinting. This direction allows us to study the degree of subject-
specific information available in a single-node’s FC profile and it also allows us
to discover the regions in the brain that provide subject-specific connectivity
maps for fingerprinting.

In this study, we investigated the above directions to deepen our understand-
ing of functional connectome fingerprinting. Specifically, we addressed the follow-
ing three questions: (1) How does the number of subjects affect the accuracy of
fingerprinting? (2) How does the granularity of parcellation used for computing
RSFC affect fingerprinting accuracy? (3) Can we find RSFC elements that are
highly suited for effective fingerprinting? We performed our analysis on resting
state fMRI data from 339 unrelated individuals in the HCP, using computing
resources from the Ohio Supercomputer Center [16]. Our results suggest that
fingerprinting performance deteriorates with increase in the number of subjects
and with the decrease in the granularity of parcellation. We also found that a
small number of regions at high granularity capture subject-specific information
needed for effective fingerprinting.

The rest of this paper is organized as follows: The datasets used in our
study are described in Sect. 2. Methods we used to answer above questions are
presented in Sect. 3. We discussed our results in Sect. 4 and we concluded with
Sect. 5.

2 Data

Resting state fMRI data from the 1200-subjects 2017 HCP data release (March
2017) [12] was used in this study. This release included processed resting state
fMRI scans from 1003 healthy young adults. While we could use all of the 1003
subjects’ data, any familial relationships among subjects may muddle our anal-
ysis for fingerprinting. To avoid familial relationships among subjects, we used
a set of 339 unrelated subjects provided in the HCP release [2].

As part of the HCP, resting-state fMRI scans were collected from each sub-
ject on two separate days. On each day, a 20 min scan left-to-right (LR) phase
encoded scan and a 20 min right-left (RL) phase encoded scan were obtained.
For these four fMRI scans, we used the extensively-preprocessed node-timeseries
data that was made available in the HCP data release. This node-timeseries data
was generated by performing a series of steps including preprocessing, artefact
removal using ICA, inter-subject registration, group-PCA, group-Independent
Component Analysis (ICA), and dual-regression to compute time series for each
independent component (IC). These steps are described in the HCP documen-
tation [1]. As part of the Group-ICA step of the HCP preprocessing pipeline,
the brain was parcellated into ICs at different granularities: 15, 25, 50, 100, 200,
and 300 regions. Node-timeseries for ICs from each of these parcellations were
provided in the HCP data release. We refer to the set of node timeseries from
these ICs as IC15, IC25, IC50, IC100, IC200, and IC300. The node-timeseries
data from the March 2017 release was used as is without further processing.
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3 Methods

3.1 FC Fingerprinting

We will formally establish the terminology that will be used in the rest of the
paper. We refer to fMRI scans for which we know which subject they are collected
from as ‘reference’ scans. We refer to the new set of scans for which the subject
they are collected from needs to be determined by matching with reference scans
as ‘target’ scans. Given a set of N reference scans {R1, R2, . . . , RN} from N
different subjects, and a set of target scans {T1, T2, . . . , TN} from the same set
of subjects, the problem of FC fingerprinting is to determine for each target scan
Ti the corresponding subject’s reference scan Rj by matching their RSFC. There
are two key steps here: (1) computing FC, (2) matching FC.

For computing RSFC from an IC node-timeseries derived from a scan, we
computed Pearson correlation between each pair of node-timeseries. As the scans
were collected from each subject on two separate days, we computed the average
RSFC per day. That is, we averaged the RSFC from the resting-state LR and RL
encoding scans on each day. As a result we have two RSFCs, one per day, from
each subject: RSFCd1 and RSFCd2. As the node-timeseries data is available for
different granularities of parcellation, these two RSFCs were computed for each
of the granularities.

For matching RSFCs, we used a method that is similar to that of Finn et al.’s
[6] whole-brain approach. Specifically, for each RSFC computed from a target
scan Ti, we computed the Pearson correlation between the vector constructed by
taking the upper-triangular values of the target RSFC matrix with that of each
of the reference RSFCs. The reference RSFC that showed highest correlation
with the target RSFC is treated as a match.

The accuracy of fingerprinting is computed as the fraction of subjects for
which the target scans were perfectly matched with their reference scans. As
we have two RSFCs from each subject (RSFCd1 and RSFCd2), we computed
fingerprinting accuracy in two ways: (1) using RSFCd1 as a reference and RSFCd2

as target, (2) using RSFCd2 as a reference and RSFCd1 as target. The results
from the former and latter cases are labelled as Day1 Ref: Day2 Tgt and Day 2
Ref: Day1 Tgt, respectively.

3.2 Studying the Effect of Sample Size

To study the effect of sample size on fingerprinting accuracy, we conducted
fingerprinting analysis on smaller subsets of the dataset. Out of the 339
subjects in our dataset, we randomly selected samples of different sizes
({50, 95, 140, 185, 230, 275, 320}) and computed their fingerprinting accuracies
using the method described above. This was repeated 100 times for each size
and the average accuracies for the 100 runs are reported.

Silhouette Coefficient Based Analysis: To investigate the effect of the sam-
ple size further and to test our hypothesis that with more and more subjects
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the RSFC space gets cluttered making it difficult to perform fingerprinting accu-
rately, we used Silhouette coefficient [13], a commonly used cluster evaluation
metric, to determine how well separated the subjects’ RSFCs are in the space.
A Silhouette value is computed for each data point in the cluster and the value
can only range from −1 to 1. Positive values closer to 1 indicate that the data
point is at the core of the cluster, while a value closer to −1 indicates that the
point is actually closer to points in another cluster than in the same cluster. For
our analysis, an RSFC with a negative value is indicative that it is more similar
to RSFCs from other subjects than it is to the RSFCs from the same subject.
For a more complete treatment of Silhouette coefficient we refer an interested
reader to [13]. The Silhouette value was calculated for each RSFC by assigning
all RSFCs from each subject to a separate cluster. For this analysis, we used
RSFCs computed from all four scans of a subject and so each cluster has four
members. We computed the average Silhouette value over all RSFCs from all
subjects. To understand how sample size affects the space of RSFCs using Sil-
houette coefficient, we created 100 randomly sampled sets of subjects each for
different sample-sizes ({5, 50, 95, 140, 185, 230, 275, 320}). For each sample-size,
we computed the average Silhouette coefficient for each of the hundred sets. We
also computed the fraction of subjects that contained a scan with a negative
Silhouette value in each of the sets for different sample-sizes. We reported the
average of the fraction of subjects.

3.3 Studying the Effect of Granularity of Parcellation

To study the effect of the granularity of parcellation on fingerprinting accuracy,
we performed fingerprinting analysis on 100 randomly sampled subjects using
their node-timeseries from IC15, IC25, IC50, IC100, IC200, and IC300. For each
level of granularity, the fingerprinting accuracy was recorded. This was repeated
100 times and the average accuracy for each granularity are reported.

3.4 Determining Elements of RSFC that are Highly Relevant
for Fingerprinting

Subject-level RSFC contains both generic and subject-specific information. Sep-
arating out subject-specific information from generic information is crucial for
determining what elements of RSFC are relevant for fingerprinting. We pursue
two key methods for identifying relevant RSFC components. Our approach is to
select the RSFC profile for one brain region, i.e., all region-pairs that involve the
brain region, and compute the fingerprinting performance of that region’s FC
profile.

Single-Node RSFC Based Fingerprinting. The FC fingerprinting method
described above (in Sect. 3.1) uses the entire set of elements from an RSFC.
Our hypothesis is that only one region’s connectivity profile may be sufficient to
uniquely fingerprint a subject. To test this, we use only edges incident on one
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Fig. 1. The effect of the number of subjects on RSFC fingerprinting. (a) Average
accuracy of fingerprinting as the number of subjects increased from 50 to 320 using the
IC300 dataset. The error bars indicate accuracies one standard deviation away from the
mean. (b) Accuracy of fingerprinting on the 1000 subject IC300 dataset as the number
of subjects increased from 100 to 1000. Error bars indicate accuracies one standard
deviation away from the mean. (c) The average subject Silhouette values with varying
number of subjects. (d) The fraction of subjects with a negative Silhouette value for
at least one RSFC.

region (at a time) for matching a target RSFC with reference RSFCs. This is
repeated for all the regions in the parcellation to determine the regions whose
RSFC profile captures highly subject-specific information. We randomly selected
100 subjects and conducted the fingerprinting analysis for each parcellation gran-
ularity on each node and recorded the resultant accuracies.

Studying Reliability of Single Node Analysis. We randomly selected a
set of 150 subjects from the 339 unrelated individuals and we refer to it as
‘Group A’. From the remaining individuals, we randomly selected another set of
150 subjects and refer to it as ‘Group B’. Using RSFCs computed from IC300

dataset, we computed for each of the 300 nodes their FC fingerprinting accuracy
when single node RSFC is used for groups A and B separately. We compare
these node-level fingerprinting accuracies from groups A and B to determine the
reliability of the single node fingerprinting accuracies.
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4 Results

4.1 The Effect of Sample Size on Fingerprinting
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Fig. 2. The accuracy of fingerprinting
with change in parcellation granular-
ity. The error bars indicate accuracies
one standard deviation away from the
mean.

The results from our analysis of quan-
tifying the effect of sample size on fin-
gerprinting are shown in Fig. 1. The fin-
gerprinting accuracy for unrelated indi-
viduals decreased from 92.16% to 89.75%
as the number of subjects increased from
50 to 320 for the scenario Day 1 Ref:
Day 2 Tgt. Similar reduction in accu-
racies were seen for Day 2 Ref: Day 1
Tgt, even though these accuracies are rel-
atively small compared to Day 1 Ref: Day
2 Tgt (Fig. 1(a)). Note that the observed
(2–3%) decrease in fingerprinting accu-
racy (in Fig. 1(a)) may seem tolerable, but
when FC fingerprinting is considered for
clinical practice where the underlying sample size is significantly larger the esti-
mated accuracy may not meet the demands of precision neuroscience. To under-
stand the extent of this drop in accuracy on larger datasets, we performed this
analysis on the larger HCP dataset with 1000 subjects. The accuracy for 1000
subjects was 85.8%, for the scenario Day 2 Ref: Day 1 Tgt. These results sug-
gest that there can be a significant reduction in accuracies as larger and larger
datasets are considered.

In general, this reduction in accuracy could be due to RSFCs from different
subjects exhibiting more similarity than the RSFCs from the same subject with
the increase in the number of subjects. That is, the space of RSFCs is more clut-
tered as the number of subjects increased. To further investigate this hypothesis
of cluttering in RSFC space due to increased number of subjects, we used Sil-
houette coefficient, a popular cluster evaluation metric, to quantify segregation
of RSFCs. The average subject Silhouette value decreased from 0.2608 to 0.1606
as the number of subjects increased from 5 to 320 subjects for IC300 (Fig. 1(c)).
This supports our hypothesis that the space of RSFCs becomes less segregated
(or more cluttered) as the number of subjects increased. Furthermore, there was
an increase in the fraction of subjects with a negative Silhouette value for at
least one RSFC from an average value of 13.8% to 35.51% as the number of
subjects increased from 5 to 320 for IC300 (Fig. 1(d)). This quantifies the degree
of cluttering in the RSFC space as a function of sample size.

4.2 The Effect of Parcellation Granularity on Fingerprinting

We also saw an increase in fingerprinting accuracy as the granularity of parcel-
lation increased (Fig. 2). The average accuracy increased from 55.47% to 91.13%
as the number of parcels increased from 15 to 300 for the scenario Day 1 Ref:
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Day 2 Tgt. This suggests that finer parcellations capture subject-specific RSFC
more effectively than coarser parcellations. This result is also in agreement with
our previous Silhouette results (Fig. 1(c)); in all cases the Silhouette values were
lower, and fraction of subjects with a negative Silhouette value were higher,
when coarse parcellation was used (Fig. 1(c) and (d)).

We also performed a combined analysis on the effect of the number of subjects
and granularity of parcellation. The average accuracy showed a constant down-
ward trend with an increase in the number of subjects and a constant upward
trend with an increase in the number of parcels (Fig. 3).
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Fig. 3. Heatmap showing the relation between the number of subjects and the granu-
larity of parcellation on fingerprinting accuracy. (a) Day 1 Ref: Day 2 Tgt (b) Day 2
Ref: Day 1 Tgt.

4.3 Determining Elements of RSFC that Are Highly Relevant
for Fingerprinting

We computed fingerprinting accuracy for each brain region by ‘matching’ the
edges incident on the region from the target RSFC with the reference RSFCs.
This was repeated for each parcellation granularity. The results are shown in
Fig. 4(a) and (b). There are three key observations: (1) There is an increase in
the range of fingerprinting accuracy as the number of nodes increased (Fig. 4(a)
and (b)). (2) The best single-node accuracy for finer parcellations are nearly as
good as the whole-brain RSFC based accuracy. For instance, best single-node
accuracy for IC300 was 86.13% compared to the whole-brain RSFC accuracy of
91.13% (only 5% lower) for Day 1 Ref: Day 2 Tgt. (3) The difference between the
best single-node accuracy and the whole-brain RSFC decreased with increase in
the number of parcellations. These results suggest that at a finer granularity of
parcellation, some region’s RSFC not only captures subject-specific information
but also does so nearly as well as the whole-brain RSFC.

To assess the reliability of the accuracies across two different samples of
subjects, we created two non-overlapping groups A and B of 150 subjects each
and computed single node RSFC based accuracies separately. The single-node
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Fig. 4. Single node RSFC based fingerprinting accuracy: (a) Day 1 Ref: Day 2 Tgt
(b) Day 2 Ref: Day 1 Tgt. The accuracy of using the full RSFC for fingerprinting as a
black dot for each parcellation granularity.
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Fig. 5. (a) Comparision between the single-node RSFC-based fingerprinting accuracy
between groups A and B for Day 1 Ref: Day 2 Tgt. (b) The accuracies of each node
are colored in the brain volume for groups A and B.

accuracies of 300 nodes in the IC300 parcellation are strongly correlated between
groups A and B (Fig. 5(a)). This suggests that these regions that consistently
resulted in higher accuracies in independent samples capture FC information
unique to individual subjects. The fingerprinting accuracies for the components
in the IC300 dataset for groups A and B are shown in Fig. 5(b). The regions that
resulted in higher accuracies in group A also resulted in higher accuracies in
group B. Particularly, the ICs in the frontal region and lateral-parietal regions
resulted in highest accuracy, approximately 90%, among other regions. These
results are consistent with the findings reported in Finn et al. [6], where they
observed frontoparietal network to exhibit very high accuracy.

5 Conclusion

In this work we investigated the different aspects of FC fingerprinting that have
been overlooked. They include the impact of number of subjects and granu-
larity of parcellation. We also studied single-node RSFC-based fingerprinting
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and the reliability of the resultant accuracies. Our results suggest that as the
number of subjects increase the RSFC space gets more and more cluttered result-
ing in reduced accuracies. We borrowed ideas from cluster evaluation that have
been well studied in the data mining community. We also found that with a
high-granularity of parcellation, higher fingerprinting accuracies are possible.
We also investigated the role of single-node RSFC in effective fingerprinting.
We found that just one brain region’s RSFC profile can be nearly as good as
the whole-brain RSFC based matching. We also observed that the frontal and
lateral-parietal regions that show very high accuracies are also reliable across
independent samples.
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