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Abstract. 3D reconstruction of the fiber connectivity of the rat brain
at microscopic scale enables gaining detailed insight about the complex
structural organization of the brain. We introduce a new method for
registration and 3D reconstruction of high- and ultra-high resolution
( 64 µm and 1.3 µm pixel size) histological images of a Wistar rat brain
acquired by 3D polarized light imaging (3D-PLI). Our method exploits
multi-scale and multi-modal 3D-PLI data up to cellular resolution. We
propose a new feature transform-based similarity measure and a weighted
regularization scheme for accurate and robust non-rigid registration. To
transform the 1.3 µm ultra-high resolution data to the reference block-
face images a feature-based registration method followed by a non-rigid
registration is proposed. Our approach has been successfully applied to
278 histological sections of a rat brain and the performance has been
quantitatively evaluated using manually placed landmarks by an expert.

1 Introduction

Studying the brain fiber architecture and their functionality, like that of the
rat brain, is important for understanding complex human brain organiza-
tion. Conventional imaging methods include electron microscopy (EM), optical
microscopy (OM), and diffusion magnetic resonance imaging (D-MRI). While
D-MRI is limited in resolution, EM and OM often require some selective stain-
ing procedure of histological brain sections to reveal fiber connectivity. Recent
advances in 3D polarized light imaging (3D-PLI, a specialized OM technique
that utilizes the birefringence of nerve fibers) allows acquiring high- and ultra-
high resolution images of fibrous brain tissues [5]. In addition, information about
3D fiber orientation can be obtained without staining. 3D-PLI data consists of
different image modalities (Fig. 1, right): Transmittance map representing the
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Fig. 1. Rat brain data. Left box: Reference blockface with 3D blockface volume (top)
and mid-section (bottom). Right box: original ultra-high resolution (1.3µm) 3D-PLI
data comprising transmittance (top left), retardation (bottom left), direction (top-
right), and inclination (bottom-right) maps. Images are scaled for better visualization.

extinction of polarized light when passing through the brain tissue, Retarda-
tion map showing the tissue’s (fiber’s) birefringence, as well as direction and
inclination maps representing the local 3D fiber orientation. Blockface images
are acquired during the sectioning procedure (Fig. 1, left) and constitute undis-
torted reference images for the acquired histological sections.

During the sectioning and mounting process brain tissue undergoes strong
distortions. Thus, spatial coherence between sections is lost and hence image reg-
istration becomes an inevitable task. In previous work, 3D reconstruction of his-
tological sections of the rat brain (e.g., [9–11]) was performed using rigid or affine
registration (e.g. [4,11]), which is generally not sufficient to cope with deforma-
tions in histological sections as mentioned in [9]. [10] used affine registration
with subsequent diffeomorphic non-rigid registration employing mutual infor-
mation. Compared to traditional histological data, 3D-PLI relies on unstained
cryo-sections and is acquired at very different resolutions. This poses different
challenges compared to traditional histological data. In previous work on the reg-
istration and 3D reconstruction of 3D-PLI data, high-resolution images (64µm
pixel size) were used in [1,13] and ultra-high resolution (1.3µm pixel size) images
in [2]. However, in [2] only rigid registration of the ultra-high resolution data to
unregistered high-resolution images was performed, and the human brain was
considered but not rat brain. [1,3] used high-resolution human brain sections
(64 µm pixel size) for registration to reference blockface data of the same res-
olution. Note that human brain sections typically cover larger areas, contain
more prominent structures, and include less image noise compared to the rat
brain. Thus, registration of 3D-PLI data of the rat brain is more difficult. In
[13], high-resolution 3D-PLI data (64 µm) of the rat brain was first registered
to the blockface data of same resolution and then transformed to a reference
Waxholm space. However, in contrast to [13], we register high-resolution images
with a section thickness of 60 µm to blockface images of 15.5 µm pixel res-
olution, which is more challenging due to the large scale difference. Also, we



Towards Ultra-High Resolution 3D Reconstruction of a Whole Rat Brain 3

subsequently register ultra-high resolution images (1.3 µm) first to the registered
high-resolution images (15.5 µm after scaling) and then to upscaled reference
blockface images at 1.3 µm resolution using non-rigid registration (each image
section has a size of about 15000 × 12000 pixels). In addition, whereas in [13]
B-splines and a fluid model were used, respectively, we here use a more realistic
deformation model based on Gaussian non-rigid body splines (GEBS) for non-
rigid registration. None of the previous work provided a complete framework for
ultra-high resolution 3D reconstruction of the rat brain from 3D-PLI.

In this contribution, we introduce a new method for multi-scale (both high-
and ultra-high resolution data) and multi-modal registration of histological rat
brain sections from 3D-PLI. The main contributions are: (1) registration of 3D-
PLI data with three different spatial resolutions (1.3 µm, 15.5 µm, and 64 µm
pixel size), (2) correlation transform-based similarity metric for efficient and
robust rigid registration, (3) introduction of a feature transform-based similarity
metric and weighted regularization for non-rigid registration using a physically-
based deformation model, (4) robust feature-based registration, and (5) a com-
plete pipeline for 3D reconstruction.

2 Method

Our approach for 3D reconstruction of both high- and ultra-high resolution 3D-
PLI data of the rat brain consists of several steps. High resolution images are first
registered to their corresponding reference blockface images using rigid and non-
rigid registration. Ultra-high resolution images are then registered both rigidly
and non-rigidly to the corresponding sections of the reference blockface images.

2.1 Registration of High-Resolution 3D-PLI Data

To coherently align the high-resolution 3D-PLI data with the reference block-
face images several registration steps are required. The high-resolution data is

Fig. 2. Pre-processing of high-resolution 3D-PLI data. Left: Original image data, mid-
dle: segmented and scaled image, and right: COM alignment with blockface image.
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first coarsely registered using center-of-mass alignment, rigid registration, and
then non-rigid registration using GEBS [8] in conjunction with a novel feature
transform-based similarity measure and a weighted quadratic regularization.

Data Preparation and Coarse Registration. High resolution 3D-PLI sec-
tions of the rat brain are segmented from the original image data (see Fig. 2,
left) as in [1]. For initial alignment we perform a scaling transformation for
high-resolution images (64 µm) and then align their center-of-mass (COM) with
that of the reference blockface images (15.5 µm, see Fig. 2, right).

We use a parametric registration model for coarse registration of 3D-PLI
data. Let g1(x) and g2(x) with x = (x, y) : Ω → R, Ω ∈ R

2, be the reference
blockface and the PLI image, respectively, and T (x | θ) be the transformation
with the parameter vector θ to be estimated. Then, the goal is to minimize the
objective function ψ to obtain the optimal θ̂:

θ̂ = argmin
θ

ψ
(
g1(x), g2

(
T (x | θ)

)
. (1)

We use a spline-based multi-resolution scheme for rigid registration based on [14].
In contrast to [14], where the sum of squared intensity differences (SSD) was
employed, we propose using a correlation transform (CoT) of the image to deal
with multi-modal data (see Fig. 1). Let Px be a patch of size 7×7 pixels centered
at x, then the CoT is given by

g̃ (x) = (g (xk) − μ) /(σ + ε), with xk ∈ Px, (2)

where μ and σ are the mean intensity and standard deviation, respectively
within Px and ε = 0.001. For ψ in (1) we use the SSD between the com-
puted CoT values for the blockface image g̃1 and the high-resolution image g̃2:

ψ(θ) =
∑

x∈Ω

(
g̃1(x) − g̃2

(
T (x | θ)

))2

. We minimize Eq. (1) using Levenberg-
Marquardt optimization.

Non-rigid Registration. Non-linear distortions are often present in 3D-PLI
data due to the cutting and mounting procedure. In addition, local deforma-
tions are introduced because of time delays between mounting and data acqui-
sition. Since these deformations are the result of physical phenomena, a suit-
able physical deformation model should be used for non-rigid registration. In
our approach, we use Gaussian elastic body splines (GEBS) which represent
an analytic solution of the Navier equation from linear elasticity theory [7]:
μΔu + (λ + μ)∇ (divu) + f = 0, where λ and μ > 0 are the Lamé constants
and u is the deformation field under Gaussian forces f, and which has been
derived in [8]. In [15], an intensity-based registration approach using GEBS was
described, which, however is not suitable for multi-modal 3D-PLI data. Using a
CoT-based similarity measure for non-rigid registration has disadvantages (see
the red arrows in Fig. 3 which indicate that structure and intensity invariance are
not well preserved). In this contribution, we introduce a feature transform-based
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g̃1 g̃2 FeT g1 FeT g2

Fig. 3. Correlation transform (g̃) and feature-transform (FeT ) images of the multi-
modal reference blockface (g1) and 3D-PLI (g2) data (also refer to Fig. 1).

(FeT) similarity measure, and a Gaussian weighted quadratic regularization. FeT
better preserves the structure and intensity invariance and is thus better suited
for non-rigid registration. FeT consists of: 1) a structure variability measure Svar

defined by the trace of a covariance matrix C for seven features: Position (x, y),
absolute values of first and second order image derivatives (|gx |, |gy |, |gxx |,
|gyy |), and intensity difference |g(x)−g(xk)| for each xk within the patch Px,
and 2) a texture measure ST based on cross-correlation between the pixels in
Px. A patch size size of 5 × 5 pixels was chosen after our experimental obser-
vations. The combined feature transform (FeT) is then designed as a weighted
sum of the two components FeT = Svar +0.5ST . Figure 3 (right) shows example
results for FeT for blockface (FeTg1) and PLI images (FeTg2). It can be seen
that boundaries and inner texture are quite similar for the multi-modal images.
To preserve discontinuities of the deformation field, we use Gaussian weights fσ

for the quadratic regularization. We use the energy functional

argmin
u,uI

∑

Ω

Jdata(FeTg1 , F eTg2 ,u
I) + λIfσ(‖u‖) ‖u − uI‖22︸ ︷︷ ︸

JIntensity

+λE Jelastic(u) ,

(3)

where FeTg1 and FeTg2 are the feature transforms of the target and source
images, respectively. The weighting factors λI , λE > 0 control the trade-off
between the data term Jdata and the two regularization terms (quadratic and
elastic, in our case λI = 0.25, λE = 0.25). Here, quadratic regularization will
allow for smoother deformation field while elastic regularization will force for
a realistic deformation and avoid any unnatural deformations. uI is the defor-
mation field obtained by minimizing the SSD between the feature transforms
with a weighted quadratic regularization (i.e. minimization of JIntensity) using
Levenberg-Marquardt optimization. The final deformation field u is obtained
using an analytic solution based on GEBS.

Figure 4 (left) reveals the result after rigid registration. Visual inspection
shows a good alignment, however, misalignments are distinct along the corpus
callosum (indicated by blue arrows), the hippocampus (cyan arrows), and along
the borders of the cerebral cortex (black arrows). Using the new similarity mea-
sure for non-rigid registration, it can be observed in Fig. 4 that the misalignments
in various regions have been tackled (see Fig. 4, middle and right).
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Fig. 4. Registration of high-resolution 3D-PLI data. Left: Rigid registration, middle:
non-rigid registration (edges of blockface overlaid with high-resolution 3D-PLI image),
and right: Color-overlay image with blockface (green) and registered high-resolution3D-
PLI image (red). (Color figure online)

2.2 Registration of Ultra-High Resolution 3D-PLI Data

Due to the large difference in spatial resolution between the blockface images and
the ultra-high resolution images (factor of about 12) and arbitrary rotations we
perform registration using a scale-space method for feature detection and match-
ing. A Gaussian scale-space and a Hessian measure are used to detect features
in the registered high-resolution and the ultra-high resolution (retardation map)
images with subsequent feature matching based on FLANN [2]. Then, a similar-
ity transformation (rigid and isotropic scaling) is computed using the matched
features and a least squares approach. Unlike in [2], we use a fast bilateral

Fig. 5. Registration of ultra-high resolution (u-HR) images to the registered high-
resolution (HR) images. First column: Matching of detected salient features (retarda-
tion maps), second column: Alignment after similarity transformation, third column:
Alignment after non-rigid registration (transmittance maps), and fourth column: High-
lighted regions with large deformations. Misalignments are indicated by green regions
and black arrows. (Color figure online)
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filtering technique [12] to cope with the noise in the rat brain data and reduce
false detections in feature extraction. In Fig. 5, examples for feature matching
results are shown. Subsequently, a non-rigid registration (see Sect. 2.1) is used
to cope with local deformations at 15.5 µm resolution (see Fig. 5, third column).
Further, visible misalignments in Fig. 5 (third column) are corrected at a reso-
lution of 1.3 µm using the proposed non-rigid registration method (see Eq. (3))
and coarse-to-fine energy minimization (we use 9 pyramid levels).

Table 1. Mean target registration error and standard deviation (TREs±std. dev.)
using landmarks (LMs) from an expert for three rat brain sections. Registration of high-
resolution (HR) images and ultra-high-resolution (u-HR) images to reference blockface
(15.5 µm).

Section
HR(64µm) ⇒ BF u-HR(1.3µm) ⇒ BF

LMs initial rigid non-rigid initial rigid non-rigid
HR u-HR COM g g̃ MI FeT COM + scale MI FeT

# 105 25 35 708.3 37.7 23.9 7.0 7.2 419.7 8.4 13.5 4.9
±93.4 ±16.8 ±14.7 ±6.7 ±3.2 ±13.4 ±3.5 ±6.8 ±2.9

# 131 22 42 785.8 40.3 22.2 13.9 6.0 532.7 25.7 13.3 10.4
±247.5 ±10.6 ±6.8 ±3.5 ±3.3 ±271.0 ±9.9 ±5.7 ±5.9

# 337 29 61 701.6 25.0 20.9 11.4 6.7 453.1 21.6 10.9 7.9
±183.7 ± 8.1 ±7.3 ±11.0 ±3.3 ±264.6 ±7.7 ±9.0 ±4.5

Mean: 25 46 731.9 34.3 22.3 10.7 6.6 475.4 18.6 12.5 7.7
±174.8 ±11.8 ±9.6 ±7.0 ±3.3 ±173.0 ±7.0 ±7.2 ±4.4

3 Experimental Results

We have evaluated the proposed method for the registration and 3D reconstruc-
tion of high- and ultra-high-resolution data of the rat brain (64 µm and 1.3 µm).
Ground truth correspondences for three sections were determined manually by
an expert (on average 25 and 46 landmarks for high- and ultra-high resolution
sections, respectively). Table 1 shows the average target registration error (TRE).
It can be seen that our proposed non-rigid registration method using the feature
transform FeT yielded an overall improvement of about 4.1 pixels and 4.8 pixels
compared to a previous non-rigid registration approach using mutual informa-
tion [6] for high- and ultra-high resolution 3D-PLI data, respectively. Notably,
our non-rigid registration method can deal with large deformations which is evi-
dent from the large overall improvements of 15.7 pixels and 10.9 pixels compared
to rigid registration using CoT (g̃) for high-resolution and ultra-high resolution
data, respectively. Also, Fig. 6 shows that our non-rigid method is able to cope
with highly non-linear deformations present in our full rat brain data (in range
from 0–132 pixels in magnitude).

Figure 7 (left, middle) shows 3D visualizations of registration results as a
reconstructed 3D volume of 278 high-resolution image sections (transmittance
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Fig. 6. Deformation magnitudes after correction using our non-rigid registration app-
roach on high-resolution PLI data for 3 different sections (#131, #210, #283).

Fig. 7. 3D reconstruction. Left: Rigid registration, middle: non-rigid registration, and
right: rendered 3D volume at 1.3 µm resolution (scaled for visualization). (Color figure
online)

maps, 15.5 µm × 15.5 µm × 16.7 mm). After rigid registration, misalignments
are visible at locations indicated by arrows (black: Tissue boundary, blue: Corpus
callossum and red: Caudate putamen) and a square in Fig. 7 (left). However, after
non-rigid registration a coherent alignment can be observed (see Fig. 7, middle).
A rendered 3D reconstructed volume of ultra-high resolution is shown in Fig. 7
(right) where the smooth green regions indicate coherent alignment of corpus
callossum (retardation maps, 1.3 µm × 1.3 µm × 16.7 mm).

All the implementations are in C++ and we have used optimized C++
libraries for computing trace of covariance matrix to speed-up the FeT -based
SSD metric minimization in our non-rigid approach. Additionally, entire frame-
work, that is from high-resolution to ultra-high resolution reconstruction, is built
as a parallel processing pipeline and optimized for speed-up in complete 3D
reconstruction.

4 Conclusion

We have introduced a new multi-scale and multi-modal registration method for
3D reconstruction of both high-resolution and ultra-high resolution 3D-PLI his-
tological images of a rat brain. The method comprises a novel feature transform-
based similarity metric integrated in a physically-based non-rigid registration
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approach as well as a correlation transform-based similarity measure for robust
rigid registration. Quantitative evaluations showed that our method improves
the result compared to a previous multi-modal non-rigid registration approach
and leads to a coherent 3D reconstruction.
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