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Abstract. Functional connectivities in the brain explain how different
brain regions interact with each other when conducting a specific activ-
ity. Canonical correlation analysis (CCA) based models, have been used
to detect correlations and to analyze brain connectivities which further
help explore how the brain works. However, the data representation of
CCA lacks label related information and may be limited when applied
to functional connectivity study. Collaborative regression was proposed
to address the limitation of CCA by combining correlation analysis and
regression. However, both prediction and correlation are sacrificed as
linear collaborative regression use the same set of projections on both
correlation and regression. We propose a novel method, deep collabora-
tive learning (DCL), to address the limitations of CCA and collaborative
regression. DCL improves collaborative regression by combining correla-
tion analysis and label information using deep networks, which may lead
to better performance both for classification/prediction and for correla-
tion detection. Results demonstrated the out-performance of DCL over
other conventional models in terms of classification accuracy. Experi-
ments showed the difference of brain connectivities between different age
groups may be more significant than that between different cognition
groups.
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1 Introduction

Brain connectivity depicts the functional relations between different brain
regions [1]. Investigating time-varying dynamic changes in brain connectivity
has been increasingly studied in recent years [2]. Many works [3–5] have stud-
ied brain connectivity and investigated how brain connectivity changes during
adolescence and how it differs between different age groups, e.g., children and
young adults.
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A number of statistical learning models, e.g. group independent component
analysis [6] and canonical correlation analysis (CCA) [7], have been applied
to multi-modal study to analyze complimentary information between different
imaging modalities and also applied to imaging-genetic study to detect interac-
tions between genetic factors [8], e.g. single nucleotide polymorphisms (SNP),
and endo-phenotypes, e.g., functional magnetic resonance imaging (fMRI).
Among these methods, CCA has been widely used to detect multivariate cor-
relations between two datasets. CCA reduces data dimensionality by projecting
higher dimensional data into lower dimensional spaces. Many variants of CCA,
e.g., multiple CCA [9], multi-set CCA [10], sparse CCA [11], structured sparse
CCA [12], have been developed to address more specific challenges in real data
applications. Despite the wide application of CCA, canonical variables lack label
related information, which may be a limitation to CCA’s application and restrict
the interpretation of its output. To address the limitation, Gross et al. [13] pro-
posed a model, collaborative regression, which identifies label related correlations
by incorporating regression into CCA’s objective function. However, according
to the simulation results in [13], collaborative regression may result in poor per-
formance for prediction. This may be due to the restriction on coefficient vectors
which requires the projection of correlation and that of the regression to be in
the same direction.

In this paper, we proposed a novel model, deep collaborative learning (DCL),
which addresses the limitation of collaborative regression by combining correla-
tion analysis and regression method via deep networks which may lead to higher
classification accuracies and better correlation detection. The performance of
DCL model was verified by the experiments in our work. In addition, many
interesting discoveries about brain connectivity were found.

The rest of the paper is organized as follows. The limitation of existing meth-
ods and how the proposed model addresses the limitations were introduced
in Sect. 2. Section 3 introduces the collection and preprocessing of brain con-
nectivity data. Conclusions and discussion of the results and possible limita-
tions/extensions of the work were in Sect. 4.

2 Method

2.1 Overview of Linear Canonical Correlation Analysis (CCA)

Canonical correlation analysis (CCA) [7] is a model widely used for analyzing
linear correlations between two data. It projects original data into the optimal
directions (canonical loading vectors) with the highest Pearson correlation.

Suppose we have two data matrices X1 ∈ R
n×p,X2 ∈ R

n×q, CCA seeks two
projection matrices U1 and U2 by optimizing the following objective function

(U∗
1 , U∗

2 ) = argmax
U1,U2

Trace
(
U ′
1Σ12U2

)
(1)

subject to U ′
1Σ11U1 = U ′

2Σ22U2 = In; where U1 ∈ R
p×k,

U2 ∈ R
q×k, k = min(rank(X1), rank(X2)), Σij := X ′

iXj
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2.2 Deep CCA

Deep CCA was proposed by Andrew et al. [14] to detect nonlinear cross-data
correlations. As illustrated in Fig. 1(a), deep CCA introduces a deep network
representation before applying CCA framework. Unlike linear CCA, which seeks
the optimal loading matrices U1, U2, deep CCA seeks the optimal network rep-
resentation f1(X1), f2(X2), as shown in Eq. (2).

(f∗
1 , f∗

2 ) = argmax
f1,f2

{
max
U1,U2

U ′
1f

′
1(X1)f2(X2)U2

‖f1(X1)U1‖2‖f2(X2)U2‖2
}

(2)

where f1, f2 are two deep networks as illustrated in Fig. 1(a).

Fig. 1. A figure showing the work-flows of deep CCA and deep collaborative learning.
Data X1, X2 are input; deep networks f1, f2 work on X1, X2 and yield H1, H2 as
output, to which CCA is or collaborative regression was applied subsequently. For deep
CCA, the optimization problem is to find the optimal network f̂1, f̂2 with the highest
canonical correlation. For deep collaborative learning, the optimization problem is to
find the optimal network f̂1, f̂2 which give both the highest canonical correlation and
the smallest prediction error

The introduction of deep network representation leads to a more flexible
ability to detect both linear and nonlinear correlations. According to experiments
on both speech data and handwritten digits data [14], deep CCA’s representation
was more correlated than that by other correlation analysis methods, e.g., linear
CCA, kernel CCA.

2.3 Deep Collaborative Learning (DCL)

CCA, as well as deep CCA, is a method of data representation. However, CCA
based methods have not found wide application compared with PCA based meth-
ods. As a method of dimension reduction, CCA’s output (canonical variables)
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lacks connections to label information and the detected correlations may be dif-
ficult to interpret consequently. To address the limitation of CCA, Gross et al.
[13] proposed a new model, called collaborative regression, whose formulation is
shown in (3). Specifically, given a label data Y ∈ R

n×1, collaborative regression
maximizes the following objective function

(u∗
1, u

∗
2) = argmax

u1,u2

b1‖X2u2 − X1u1‖2 (3)

+ b2‖Y − X1u1‖2 + b3‖Y − X2u2‖2
Collaborative regression addresses CCA’s limitations by taking advantage of
label information so that it can detect canonical correlations which are label
related. However, according to the simulation in [13], collaborative regression
may lead to poor performance in terms of classification accuracies and there-
fore may not be suitable for brain connectivity study. This may be due to the
coupled restriction on coefficient vectors u1, u2 which requires the projection of
correlation and that of the regression to be in the same direction.

To address these limitations of both CCA and collaborative regression
method, we propose a novel model, deep collaborative learning (DCL), which
incorporates regression into CCA in an uncoupled way via deep networks. Sup-
pose we have two modality data X1 ∈ R

n×p,X2 ∈ R
n×q and a label data

Y ∈ R
n×1, where n denotes sample size (number of subjects) and p, q are the

dimensionality of feature of X1,X2 respectively. The formulation of deep collab-
orative learning is shown in Eqs. (4) and (5) and its framework is illustrated in
Fig. 1(b).
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where H1 = f1(X1) ∈ R
n×r, H2 = f2(X2) ∈ R

n×s; f1, f2 are two deep networks
as illustrated in Fig. 1(b); Σij := H ′

iHj ; and ‖A‖tr := Trace(
√

A′A) = Σσi;
U1, U2 in Eq. (4) subject to U ′

1Σ11U1 = U ′
2Σ22U2 = I.

As shown in Eqs. (4) and (5), deep collaborative learning seeks the opti-
mal network representation H1 = f1(X1),H2 = f2(X2) instead of the optimal
projection vectors u1, u2, β1, β2 and the coupled restriction can be relaxed con-
sequently. Relaxation of the coupled restriction leads to a better performance
on both prediction/classification and correlation analysis compared with linear
collaborative regression.
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3 Application to Brain Connectivity Study

3.1 Introduction of Brain Connectivity

We next apply the DCL model to the study of brain connectivity and devel-
opment. Brain connectivity depicts the anatomical or functional associations
between different brain regions or nodes [1]. It is of interest to investigate how
brain connectivity changes during adolescence and how it differs between differ-
ent age groups, e.g., children, young adults, which may further contributes to the
study of normal and pathological brain development. The proposed model, deep
collaborative learning, is a network representation based model which can detect
signals having both strong correlations (reflecting brain connectivity) and good
discriminative power (reflecting differences between age groups) and therefore is
very suitable for the study of brain connectivity and development.

3.2 Brain Connectivity Data

Several brain fMRI modalities from the Philadelphia Neurodevelopmental
Cohort (PNC) [15] were used in the experiments. PNC cohort is a large-scale
collaborative study between the Brain Behavior Laboratory at the University
of Pennsylvania and the Children’s Hospital of Philadelphia. It contains multi-
modal neuroimaging data (e.g., fMRI, diffusion tensor imaging) and multiple
genetic factors (e.g., singular nucleotide polymorphisms of SNPs) from adoles-
cents aged from 8 to 21 years. There were three types of fMRI data in PNC cohort
which were collected during different task states: resting-state fMRI (rs-fMRI),
emotion task fMRI (emoid t-fMRI), and nback task fMRI (nback t-fMRI). Two
types of labels, age and Wide Range Achievement Test (WRAT) score [16], which
is a measure of comprehensive cognitive ability, were used for classification and
correlation analysis.

3.3 Results

We compared the performance of the DCL model to that of CCA, deep CCA
(DCCA), collaborative regression (CR) for both age classification and the clas-
sification of cognitive ability. For age groups, the top 20% (in terms of age)
subjects were extracted as young adults group (aged 18 to 22) while the bot-
tom 20% were extracted as children group (aged 8 to 11). For cognitive ability
group, the top 20% (assess via the WRAT score) of individuals were extracted as
a high cognition group (WRAT 114–145) while the bottom 20% were extracted
as a low cognition group (WRAT 55–89). Data were separated into a train-
ing set (60%) and a testing set (40%). The training set was used for DCL’s
network training and the trained network was applied to testing set for classi-
fication subsequently. All preprocessing methods, including data augmentation,
data standardization, etc., were performed on training set and testing set sep-
arately. All hyper-parameters, including momentum, activation function type,
learning rate, decay rate, batch size, maximum epochs, the number of layers,
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Fig. 2. A figure showing the comparison of the performances of different methods
on classifying different age groups (young adults (aged 18–22) vs. children (aged 8–
11)). The full names of the methods are deep CCA (DCCA), collaborative regression
(CR), deep collaborative learning (DCL). The numbers appearing in the figure were
classification accuracies (%).

Fig. 3. A figure showing the comparison of the performances of different methods on
classifying high/low WRAT scores (cognitive ability). The full names of the meth-
ods can be found in the caption of Fig. 2. The numbers appearing in the figure were
classification accuracies (%).

the number of nodes in each layer, and the dimensionality of canonical vari-
ables, were chosen using grid search based on the training data. To verify the
performance of the DCL model, we also included the results of other competitive
methods, including deep CCA and collaborative regression (CR). As CCA based
methods require at least two datasets as input, different data-pair combinations
were used as data input: rs-fMRI and nback t-fMRI (rest-nback); rs-fMRI and
emoid t-fMRI (rest-emoid); nback t-fMRI and emoid t-fMRI (rest-emoid). For
each data combination, we tested the performance of deep CCA, CR, and DCL,
and the results were shown in Fig. 2 (classifying age groups) and Fig. 3 (classi-
fying WRAT groups). We only included accuracy as a criterion for evaluating
classification performance as the two groups had balanced numbers of subjects
(top 20% versus bottom 20%).

From Figs. 2 and 3, the proposed model, deep collaborative learning, achieved
higher classification accuracies than two CCA based models and collaborative
regression for both classifying age groups and classifying cognition groups, which
may be a result of the nonlinear representation of deep network and the combina-
tion of prediction and correlation detection. Collaborative regression performed
better than deep CCA but worse than DCL in terms of classification, which
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may be due to the incorporation of label information. The high classification
accuracy (over 90%) indicates that different age groups (e.g. young adults and
children) and different cognition groups (high WRAT scores and low WRAT
scores) may exhibit different brain functional connectivity patterns and func-
tional brain connectivity might be used as a finger-print to identify different
subjects. In addition, it can also be seen from Figs. 2 and 3 that the classifica-
tion accuracy of age groups is higher than that of cognition groups which might
be due to the fact that age is a fixed phenotype while cognition score is just a
rough measure which is not as accurate and consistent as age.

4 Discussion and Conclusion

In the work we propose a new model, DCL, which captures label related corre-
lations and performs well on classification by combining correlation analysis and
regression using deep networks. According to the results, DCL performed bet-
ter than deep CCA and collaborative regression, which may demonstrate that
the relaxation of restriction on projections using deep networks help achieve
higher classification accuracies. The superior power of DCL on both correlation
detection and classification makes DCL a suitable model for brain connectiv-
ity study, whose research interest focuses on analyzing correlations of functional
networks and how different subject groups exhibit different brain connectivity
patterns. From the results, both different age groups and different cognition
groups exhibit significant differences in brain connectivities. In addition, brain
connectivity tends to be more discriminative when used to classify age groups
than to classify WRAT/cognition groups. The framework of DCL can be easily
extended to more than three datasets integration as in [17] and may become more
suitable to deal with brain imaging data if replacing fully connected networks
with convolutional neural networks.
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