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Abstract. In this study, we propose a neural network approach to cap-
ture the functional connectivities among anatomic brain regions. The
suggested approach estimates a set of brain networks, each of which
represents the connectivity patterns of a cognitive process. We employ
two different architectures of neural networks to extract directed and
undirected brain networks from functional Magnetic Resonance Imaging
(fMRI) data. Then, we use the edge weights of the estimated brain net-
works to train a classifier, namely, Support Vector Machines (SVM) to
label the underlying cognitive process. We compare our brain network
models with popular models, which generate similar functional brain
networks. We observe that both undirected and directed brain networks
surpass the performances of the network models used in the fMRI lit-
erature. We also observe that directed brain networks offer more dis-
criminative features compared to the undirected ones for recognizing the
cognitive processes. The representation power of the suggested brain net-
works are tested in a task-fMRI dataset of Human Connectome Project
and a Complex Problem Solving dataset.

Keywords: Brain graph - Brain decoding - Neural networks

1 Introduction

Brain imaging techniques, such as, functional Magnetic Resonance Imaging
(fMRI) have facilitated the researches to understand the functions of human
brain using machine learning algorithms [14,15,20,25]. In traditional approaches,
such as Multi-Voxel Pattern Analysis (MVPA), the aim was to discriminate cog-
nitive tasks from the fMRI data itself without forming brain graphs and consid-
ering relationship between nodes of graphs. Moreover, Independent Component
Analysis (ICA) and Principal Component Analysis (PCA) have been applied to
obtain better representations. In addition to feature extraction methods, Gen-
eral Linear Model (GLM) and Analysis of Variance (ANOVA) have been used
to select important voxels [20]. None of these approaches take into account the
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massively connected network structure of the brain [3,4,12,22,26]. Recently, use
of deep learning algorithms have also emerged in several studies [7-9] to clas-
sify cognitive states. Most of these studies mainly focus on using deep learning
methods to extract better representations from fMRI data for brain decoding.

Several studies form brain graphs using voxels or anatomical regions as nodes
and estimate the edge weights of brain graphs with different approaches. Among
them, Richiardi et al. [21] have created undirected functional connectivity graphs
in different frequency subbands. They have employed Pearson correlation coef-
ficient between responses obtained from all region pairs as edge weights and use
these edge weights to perform classification in an audio-visual experiment. Brain
graphs, constructed using pairwise correlations and mutual information as edge
weights, have been used to investigate the differences in networks of healthy
controls and patients with Schizophrenia [11] or Alzheimer’s disease [10,13].
Yet, these studies consider only pairwise relationships while estimating the edge
weights and ignore the locality property of the brain.

Contrary to pairwise relationships, a number of studies have estimated the
relationships among nodes within a local neighborhood. Ozay et. al. [19] and
Firat et al. [6] have formed local meshes around nodes and constructed directed
graphs as ensembles of local meshes. They have applied Levinson-Durbin recur-
sion [24] to estimate the edge weights representing the linear relationship among
voxels and have used these weights to classify the category of words in a work-
ing memory experiment. Similarly, Alchihabi et al. [2] have applied Levinson-
Durbin recursion to estimate the edge weights of local meshes of dynamic brain
network for every brain volume in Complex Problem Solving task and have
explored activation differences between sub-phases of problem solving. While
these studies conserve the locality in the brain, construction of a graph for every
time instant discards temporal relationship among nodes of the graph. Onal et
al. [17,18] have formed directed brain graphs as ensemble of local meshes. They
have estimated the relationships among nodes within a time period considering
the temporal information using ridge regression. Since the spatially neighbor-
ing voxels are usually correlated, linear independence assumption of features
required for closed form solution to the estimation of linear relationship among
voxels is violated. This may result in large errors and inadequate representation.
Since the aforementioned studies form local meshes around each node separately,
associativity is ignored in the resulting brain graphs.

In this study, we propose two brain network models, namely, directed and
undirected Artificial Brain Networks to model the relationships among anatom-
ical regions within a time interval using fMRI signals. In both network models,
we train an artificial neural network to estimate the time series recorded at node
which represent an anatomic region by using the rest of the time series recorded
in the remaining nodes. In our first neural network architecture, called directed
Artificial Brain Networks (dABN), global relationships among nodes are esti-
mated without any constraint whereas in our second architecture of undirected
Artificial Brain Networks (uABN), we apply a weight sharing mechanism to
ensure undirected functional connections.
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We test the validity of our dABN and uABN in two fMRI datasets and com-
pare the classification performances to the other network models available in the
literature. First, we employ the Human Connectome Project (HCP), task-fMRI
(tfMRI) dataset, in which the participants were required to complete 7 different
mental tasks. The second fMRI dataset contains fMRI scans of subjects solving
Tower of London puzzle and has been used to study regional activations of Com-
plex Problem Solving [2,16]. The task recognition performances of the suggested
Artificial Brain Networks are significantly greater than the ones obtained with
state of the art functional connectivity methods.

2 Extraction of Artificial Brain Networks

In this section, we explain how we estimate the edge weights of directed and undi-
rected brain networks using artificial neural networks. Throughout this study, we

represent a brain network by G = (V, E), where V' = {vy, v, v3, ..., var }, denotes
the vertices of the network, which represent M = 90 anatomical brain regions,
R ={r1,r2,73,...,70}. The attribute of each node is the average time series of

BOLD activations. The average BOLD activation of an anatomical region r; at
time ¢ is denoted with b; ;. We use all anatomical regions defined by Anatomical
Atlas Labeling (AAL) [23], except for the ones residing in Cerebellum and Ver-
mis. We represent the edges of the brain network by E = {e; ;|Vv;,v; € V,i # j}.
The weights of edges depend on the estimation method. We denote the adjacency
matrix which consists of the edge weights, as A, where a; ; represents the weight
of edge from v; to v;, when the network is directed. When the network is undi-
rected the weight of the edge formed between v; and v; is a; ; = a;,;. Sample
representations of directed and undirected brain networks are shown in Figs. 1
and 2, respectively.

Amygdala Parietal Amygdala Parietal
Cingulum Occipital Cingulum Occipital
Fig. 1. A directed brain network. Fig. 2. An undirected brain network.

We temporally partition the fMRI signal into chunks with length L recorded
during each cognitive process. The fMRI time series at each chunk is used to esti-
mate a network to represent the spatio-temporal relationship among anatomic
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regions. Then, the cognitive process k of subject s is described as a consecutive
list (T}7) of brain networks, formed for each chunk within time interval [¢, ¢+ L],
where T} = {G1, G2, ...,Gc, }. Note that, Cy is the number of chunks obtained
for cognitive process k and equals to | Ny/L|, where Ny denotes the number
of measurements recorded for cognitive process k. Since we obtain a different
network for each duration of length L for a cognitive process of length Ny, this
approach estimates a dynamic network for the cognitive process, assuming that
Ny, is sufficiently large.

For a given time interval [t,t + L], weights of incoming edges to vertex v; is
defined by an M dimensional vector, a; = [a;1,a;2 . ..a; p). Note that the ith
entry a; ; = 0, which implies that a node does not have an edge value into itself.
These edge weights define the linear dependency of activation, b; ., of region r;
at time ¢ to the activations of the remaining regions, b;; for a time interval
t e {t,t+ L}

M
biw= Y aibyter=byte V' e{tt+L} (1)
#i5=1

where IA)M/ is the estimated value of b; »+ at time ¢’ with error rate ¢, which
is the difference between the real and estimated activation. Note that each node
is connected to the rest of M — 1 nodes each of which corresponding to anatomic
regions.

2.1 Directed Artificial Brain Networks (dABN)

In fully connected directed networks, we define two distinct edges between all
pairs of vertices, E = {e; j,€;,|vi,v; € V,i # j} where e, ; denotes an edge from
v; to vj. The weights of the edge pairs are not to be symmetrical, a; ; # a;,;.

The neural network we design to estimate edge weights consists of an input
layer and an output layer. For every edge in the brain network, we have an
equivalent weight in the neural network, such that weight between input; and
output;, w; ; is assumed to be an estimate for the weight, a; ; of the edge from
v; to vy, in the artificial brain network.

We employ a regularization term A to increase generalization capability of
the model and minimize the expected value of sum of squared error through
time. Loss of an output node output; is defined as,

M
Loss(output;) = E((b;v — Z w; b )?) + Aw] wy, (2)
j#i.5=1

where w; ; denotes the neural network weight between input; and output; and
E(.) is the expectation operator taken over time interval [t, t + L]. For each train-
ing step of the neural network, e, gradient descent is applied for the optimization
of the weights as in Eq. (3) with empirically chosen learning rate, a. The whole
system is trained for an empirically selected number of epochs (Fig. 3).
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Input Output
layer layer

Fig. 3. Directed Artificial Brain Network architecture.
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After training, the weights of neural network are assigned to edge weights of
the corresponding brain graph, a; ; < w; j, Y ;.

awm»

2.2 Undirected Artificial Brain Network (uABN)

In undirected brain networks, similar to directed brain network, we define double
connections between every pair of vertices E = {e; ;,e;:|vi,v; € V,i # j}.
However, in order to make the network undirected, we must satisfy the constraint
that twin (opposite) edges have the equal weights, a; ; = a; ;. In order to assure
th’s property in the neural network explained in the previous section, we use a
weight sharing mechanism and keep the weights of the twin (opposite) edges in
the neural network equal through the learning process, such that w;; = w; ;.
The proposed architecture is shown at Fig. 4.

We use Eq. (2) for undirected Artificial Brain Networks. The weight matrix
of uABN is initialized symmetrically, w;; = w;; and in order to satisfy the
symmetry constraint through training epochs, we define the following update
rule for the weights, w; ; and w;; at epoch e.

e _ (e (e—=1) 1 [0OLoss(output;) — OLoss(output;)
w; i =W —w s — §a D] + dur, . (4)

Again, after an empirically determined number of epochs, the weights of edges
in the undirected graph is assigned to the neural network weights, a; ; « w; ;.

2.3 Baseline Methods

In this subsection, we briefly describe the popular methods that have been used
to build functional connectivity graphs, in order to provide some comparison for
the suggested Artificial Brain Network.
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Input Output
layer layer

Fig. 4. Neural network structure to create undirected Artificial Brain Networks (con-
nections with the same colors are shared).

Pearson Correlation. In their work, Richiardi et al. [21] defined the func-
tional connectivity between two anatomic regions as pair-wise Pearson correla-
tion coefficients computed between the average activations of these regions in a
time interval. The edge weights are calculated by,

cov(bi ¢ L, bjt.L)
Pbi v n,bjen — : — s (5)

Ob;+,.0bj ¢ 1.

where b ¢ 1. = [bit,b; (44+1), - - - » bi,(t+1)] Tepresents the average time series of
BOLD activations of region ¢ between time ¢ and ¢+ L, cov() defines the covari-
ance, and o, represents the standard deviation of time series s. This approach
assumes that the pair of similar time series represent the same cognitive process
measured by fMRI signals.

Closed Form Ridge Regression. In order to generate brain networks with
the method proposed in [18], we estimate the activation of a region from the
activations of its neighboring regions in a time interval [¢t,¢ + L]. We minimize
the loss function in Eq. 2 using closed form solution for ridge regression. The loss
function is minimized with respect to the edge weights outgoing from a vertex v;,
@; = [a;1,a:2 .. .a; pm) and the following closed form solution of ridge regression
is obtained:

a= (B"B+A\)"'B'bis 1, (6)

where B is an L x (M — 1) matrix, whose columns consist of the average BOLD
activations of anatomic regions except for the region 7; in the time interval [¢, ¢+
L] such that column j of matrix B is b; ¢ 1. A € R represents the regularization
parameter.
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3 Experiments and Results

In order to examine the representation power of the suggested Artificial Brain
Networks, we compare them with the baseline methods, presented in the previous
subsection, on two different fMRI dataset. The comparison is done by measuring
the cognitive task classification performances of all the models.

3.1 Human Connectome Project (HCP) Experiment

In Human Connectome Project dataset, 808 subjects attended 7 sessions of fMRI
scanning in each of which the subjects were required to complete a different
cognitive task with various durations, namely, Emotion Processing, Gambling,
Language, Motor, Relational Processing, Social Cognition, and Working Mem-
ory. We aim to discriminate these 7 tasks using the edge weights of the formed
brain graphs.

In the experiments, the learning rate o was empirically chosen as o = 107°
for both dABN and uABN and window size is chosen as L = 40. We tested
the directed and undirected Artificial Brain Networks and Ridge Regression
method using various A values. Since computation of Pearson correlation does
not require any hyper parameter estimation, a single result is obtained for the
Pearson correlation method.

After estimating the Artificial Brain Networks and forming the feature vec-
tors from edge weights of the brain networks, we performed within-subject and
across-subject experiments using Support Vector Machines with linear kernel.
During the within-subjects experiments, we performed 3-fold cross validation
using only the samples of a single subject. Table 1 shows the average of within-
subject experiment results over 807 subjects, when the classification is performed
using a single subject brain network of 7 tasks. During the across-subject experi-
ments, we performed 3-fold cross validation using the samples obtained from 807
subjects. For each fold we employed the samples from 538 subjects to train and
269 subject to test the classifier. Table2 shows the across-subject experiment
results.

Table 1. Within-subject performances of brain networks on HCP dataset.

A | Pearson corr. | Ridge reg. | dABN uABN
Mean |Std |Mean |Std | Mean |Std |Mean |Std
0/0.7194 1 0.16 |- - 0.7435/0.13 | 0.5918 |0.13

32/0.7194 1 0.16 |0.7957|0.11{0.9133 | 0.08 | 0.913 |0.08
6410.7194 | 0.16 |0.8304 |0.11 | 0.9406 0.07 | 0.9402  0.07
128 0.7194 1 0.16 |0.8377/0.11|0.9463 | 0.06 | 0.9462 | 0.07
256 0.7194 | 0.16 |0.8119]0.12|0.9313 |0.08|0.9307 | 0.08
51210.7194 | 0.16 |0.7462|0.13 | 0.8852 | 0.1 |0.8849 0.1
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Table 2. Across-subject performances of brain networks on HCP dataset.

A | Pearson corr. | Ridge reg. dABN uABN
Mean |Std |Mean |Std | Mean |Std |Mean |Std
0/0.7524|0.01 |- - 0.6654 | 0.01|0.5681 |0.01

3210.7524 |0.01 | 0.8027 |0.01|0.8153|0.000.8123  0.00
6410.7524 |0.01 |0.8223 |0.00|0.8312|0.01|0.8297 0.01
128 0.7524 |0.01 | 0.8370 |0.01|0.8401 0.01|0.8393|0.01
2561 0.7524 | 0.01 | 0.8461 | 0.01 | 0.8410 | 0.01  0.8406 | 0.00
51210.7524 | 0.01 | 0.8466 | 0.01|0.8357 |0.01|0.8357 | 0.01

Table 1 shows that in within subject experiments our methods, dABN and
uABN, have the best performances in classifying the cognitive task under differ-
ent A values, furthermore performances of directed networks are slightly better
than undirected ones. It can be observed that as A increases, generalization of
our models also increase up to A = 128.

Table 2 shows that our methods outperforms the others within a range of
lambdas, A = {32,64,128}. Pearson Correlation results in the best accuracy
when no regularization is applied to Artificial Brain Networks. Closed Form
Ridge Regression solution offers more discriminative power in higher A values.

3.2 Tower of London (TOL) Experiment

We also test the validity of the suggested Artificial Brain Network on a rela-
tively more difficult fMRI dataset, recorded when the subjects solve Tower of
London (TOL) problem. TOL is a puzzle game which has been used to study
complex problem solving tasks in human brain. TOL dataset used in our experi-
ments contains fMRI measurements of 18 subjects attending 4 session of problem
solving experiment. In the fMRI experiments, subjects were asked to solve 18
different puzzles on computerized version of TOL problem [16]. There are two
labeled subtask of problem solving with varying time periods namely, planning
and execution phases.

As the nature of the data is not compatible with a sliding window approach
and the dimensionality is too high for a computational model, in the study of
Alchihabi et al. [1], a series of preprocessing steps were suggested for the TOL
dataset. In this study, we employ the first two steps of their pipeline. In the first
step called vozel selection and regrouping, a feature selection method is applied
on time series of voxels to select the “important” ones. Then, the activations
of the selected voxels in the same region are averaged to obtain the activity
of corresponding region. As a result, a more informative and lower dimensional
representation is achieved. In the second step, bi-cubic spline interpolation is
applied to every consecutive brain volumes and a number of new brain volumes
are inserted between two brain volumes to increase temporal resolution. For the
details of interpolation, refer to [1]. In this study, the optimal number of volumes
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inserted between two consecutive brain volumes are found empirically and it is
set to 4. Therefore, the time resolution of the data is increased four times.

We applied the above-mentioned preprocessing steps to all of the 72 ses-
sions in the dataset. After the voxel selection phase, number of regions contain-
ing selected voxels is much less than 116 regions. Note that, we discard regions
located in Cerebellum and Vermis. Window size for this dataset was set to L = 5,
since there are at least 5 measurements for every sub-phase after the interpola-
tion. The neural network parameters used in our experiments are o = 1076 and
#epochs = 10. Table 3 shows the mean and standard deviation of classification
accuracies obtained with our method and the base-line methods. Similar to HCP
experiments, we slided non-overlapping windows on the measurements and we
performed 3-fold cross validation during TOL experiments.

Table 3. Across-subject performances of mesh networks on TOL dataset.

A | Pearson corr. | Ridge reg. | dABN uABN
Mean |Std |Mean |Std |Mean |Std |Mean | Std
0]0.6119/0.09 | - - 0.8914 | 0.11 | 0.8499 | 0.12

3210.6119/0.09 |0.66880.10|0.8913 0.11|0.8499|0.12
6410.6119/0.09 |0.6651|0.10|0.8914 0.11|0.8499|0.12
1281 0.6119 1 0.09 |0.6679 | 0.10|0.8906 | 0.11 | 0.8499 | 0.12
256 0.6119 | 0.09 |0.66850.10 | 0.8905 | 0.11 | 0.8500 | 0.12
51210.6119/0.09 |0.67050.10|0.8912 | 0.11 | 0.8498 | 0.12

Table 3 shows that using Artificial Brain Networks gives better performances
than using Pearson Correlation and Closed Form Ridge Regression methods in
classifying sub-phases of complex problem solving under various regularization
parameters. We observe that decoding performances of directed brain networks
outperforms those of undirected brain networks.

4 Discussion and Future Work

In this study, we introduce a network representation of fMRI signals, recorded
when the subjects perform a cognitive task. We show that the suggested Artifi-
cial Brain Network estimated from the average activations of anatomic regions
using an artificial neural network leads to a powerful representation to discrim-
inate cognitive processes. Compared to the brain networks obtained by ridge
regression, the suggested Artificial Brain Network achieves more discriminative
features. The success of the suggested brain network can be attributed to the
iterative nature of the neural network algorithms to optimize the loss function,
which avoids the singularity problems of Ridge Regression.

In most of the studies, it is customary to represent functional brain con-
nectivities as an undirected graphs. However, in this study, we observe that the



52 B. B. Kivilcim et al.

directed network representations capture more discriminative features compared
to the undirected ones in brain decoding problems.

In this study, we consider complete brain graphs where all regions are
assumed to have connections to each other. A sparser brain representation can
be computationally more efficient and neuro-scientifically more accurate. As a
future work, we aim to estimate more efficient brain network representations by
employing some sparsity parameters in the artificial neural networks.

It is well-known that brain processes the information in various frequency
bands. [5,21] applied discrete wavelet transform before creating connectivity
graphs. A similar approach can be taken for a more complete temporal informa-
tion in brain decoding problems.
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