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Abstract. In this study, we propose a novel brain parcellation algo-
rithm, called BrainParcel. BrainParcel defines a set of supervoxels by
partitioning a voxel level brain graph into a number of subgraphs, which
are assumed to represent “homogeneous” brain regions with respect to a
predefined criteria. Aforementioned brain graph is constructed by a set of
local meshes, called mesh networks. Then, the supervoxels are obtained
using a graph partitioning algorithm. The supervoxels form partitions
of brain as an alternative to anatomical regions (AAL). Compared to
AAL, supervoxels gather functionally and spatially close voxels. This
study shows that BrainParcel can achieve higher accuracies in cogni-
tive state classification compared to AAL. It has a better representation
power compared to similar brain segmentation methods, reported the
literature.
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1 Introduction

Functional Magnetic Resonance Imaging (fMRI) is one of the most common
imaging techniques for detecting the activation levels of human brain, during a
cognitive process. fMRI measures the change of oxygen level in the brain with
respect to neural activities. In principle, oxygen dependencies of neuron groups
fluctuate in accordance with the activation and MRI machines can detect those
changes through the scan. An intensity value is recorded at each 1–2 s for a
neuron group called voxel. Each voxel is a cubic volume element around 1–2 mm3

size. Classification of the cognitive stimulus from the voxel intensity values are
called brain decoding and the pioneering studies in this area are called Multi
Voxel Pattern Analysis (MVPA) [9,11]. MVPA involves recognizing the cognitive
states represented by voxel intensity values of fMRI data, using machine learning
techniques. A set of features is extracted from voxel intensity values recorded
during each cognitive task. However, due to the large feature space formed by
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voxels (about 100,000–200,000 voxels per brain volume), dimension reduction
techniques are required, such as, clustering the voxels groups into homogeneous
regions.

Anatomical regions, defined by experimental neuroscience can be used as
brain parcels. In most common approach, called AAL, there are 116 major
regions and each region is assumed to contain voxel groups which work together.
In order to reduce the dimension of the feature space, representative signals
can be selected for each region or average time series can be computed within
each region [1,16]. However, anatomical regions lose the subject-specific and
task dependent information of brain activities. Besides, sizes of the regions vary
extremely and activation levels of voxels may not be homogeneous within an
anatomic region.

In order to partition the voxels into a set of homogeneous regions, well-defined
clustering methods such as k-means [6,7,10], hierarchical clustering [1,4], and
spectral clustering [17,20] can be used. The pros and cons of these clustering
algorithms are widely studied in fMRI literature on a variety of datasets [8,18].
Some studies bring spatially close voxels together considering only the location
information in analogy with the AAL [6]. Although this method improves the
strict norms of AALs, it lacks the functional similarity of voxel time series, which
belongs to the same regions. Recent literature reveals that functionally close
voxels tend to contribute to the same cognitive task, thus, form homogeneous
regions. Therefore, one needs to bring both functionally similar and spatially
contiguous voxels together to define homogeneous brain regions [21]. Similarly,
Wang et al. suggest to combine n-cut segmentation algorithm with simple linear
iterative clustering (SLIC) [21]. Blumensath et al. use region growing for brain
segmentation with functional metrics and spatial constraints between samples
[3]. Bellec et al. also use region growing with functional metrics within the 26
spatial neighborhood in 3-Dimensional space [2]. Background on neuronal activ-
ity, also, supports this idea, such that physically close neurons are in chemical
interaction with each other and this interaction can be interpreted as functional
similarity. With these objectives in mind, many different clustering algorithms
are applied to create data dependent homogeneous brain parcels. Depending on
the predefined distance measure, the clustering algorithms can group spatially
or functionally similar voxels under the same cluster. Craddock et al. adopt this
idea and propose a brain parcellation method, in which they represent the voxels
in a graph structure and used n-cut on a spatially constrained brain graph with
functional edges [5]. In order to achieve spatial contiguity they connected each
voxel to its 26 closest neighbors in 3D space. On the other hand, to accomplish
functional homogeneity, they set edge weights of the graph to the correlation
between the time series of two voxels as follows;

ei,j =

{
corr(vi,vj) , dist(vi,vj) ≤ dt

0 , otherwise,
(1)

where dt is selected to be
√

3 and corr(vi,vj) is the Pearson Correlation between
the intensity values of voxels vi and vj. They, also, remove the edges with cor-
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relation values less than 0.5 to reduce the weak connections. Then, they define
a brain graph G = (V,E), where the set of voxels V = [v1,v2 . . .vN] are the
nodes of the graph, and E = [e1,1, e1,2, . . . eN,N ] are the edge weights computed
according to Eq. 1. They partition the graph G into subgraphs by removing the
edges iteratively using N-cut segmentation method using the following formula,

N cut =

∑
vi∈A,vj∈B ei,j∑
vi∈A,vn∈V ei,n

+

∑
vi∈A,vj∈B ei,j∑
vj∈B,vn∈V ej,n

. (2)

As it is mentioned above, conventional MVPA methods create features sets
from the selected voxel intensity values or use some averaging techniques to rep-
resent each brain region. This approach is quite restrictive to represent cognitive
states. Recent studies suggest to model the relationships among voxels rather
than using voxel intensity values. Ozay et al., demonstrate this idea by suggest-
ing the Mesh Model which is a graph structure that identifies the connectivity
among voxels [15].

Mesh Model (MM) represents intensity values of voxels as a weighted linear
combination of its neighboring voxels, defined on a neighborhood system. The
estimated weights represent the arc weights between the voxels and the voxels
represents a node in the overall brain graph. A star mesh is formed around each
voxel and its p neighbors, independently. In each mesh, the voxel at the center
is called seed-voxel and the surrounding voxels are called neighbors. p nearest
neighbors of voxel vi for cognitive stimulus k are shown as ηp

vi(k)
and they can

be selected spatially (Spatial Mesh Model - SMM) [12,14] or functionally (Func-
tional Mesh Model - FMM) [12,13] such that, spatial neighbors has the smallest
Euclidean distance with the seed-voxel whereas functional neighbors has maxi-
mum functional similarity. Meshes are formed using the full length time series
for voxels, recorded during an fMRI experiment session. Assuming s measure-
ments are taken for each cognitive stimulus, time series of a voxel vi for stimulus
k is an s dimensional vector shown as vi(k) = [vi(k)1,vi(k)2, . . .vi(k)s]. Spa-
tial Mesh Model (SMM) selects the neighbors according to the physical distances
among voxels in 3-dimensional space by Euclidean distance [12,14]. On the other
hand, Functional Mesh Model (FMM), proposed by Onal et al., selects functional
neighbors with the highest p-correlation values obtained by Pearson Correlation
[12,13]. Afterwards, time series of the seed voxel is represented as a weighted
combination of its neighbors by the following equation for each cognitive stimuli:

vi(k) =
∑

vj(k)∈ηp
vi(k)

ai,j,kvj(k) + εi,j , (3)

where ηp
vi(k)

is the p nearest neighbors of voxel vi for sample k and ai,j,k are the
arc weights of the mesh network between the voxels and they are called Mesh Arc
Descriptors (MADs). MADs are estimated using regularized Ridge regression
method by the minimization of error term εi,j . Concatenating each MAD for
each voxel and cognitive task creates a new feature space and classification is
performed on this feature space.
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In this study we combine classical brain parcellation approach proposed by
Craddock et al. and Mesh Model and propose a novel brain parcellation algo-
rithm, called BrainParcel. Unlike current methods, we partition the graph formed
by star meshes and partition this graph into brain regions. We show that brain
partitions obtained by BrainParcel have better representation power than the
partitions obtained by state of the art clustering methods and AAL in cognitive
state classification problem.

Define 
neighborhood 
system among 

voxels

Extract MADs 
among voxels 

Construct 
voxel level 
brain graph

Graph 
Partitioning

Representation 
of supervoxels

Construct 
supervoxel 
level brain 

graph

Classification

Fig. 1. Overall architecture of the BrainPacel algorithm.

2 BrainParcel

Brain parcel is a brain partitioning algorithm that uses graph theoretic
approaches. First, we form a brain graph by ensembling the meshes estimated
around each voxel. Then, we partition this graph using n-cut segmentation algo-
rithm. Each region is represented by the average time series of all voxels in
that region. Then, these representative time series are fed to a machine learn-
ing algorithm to classify the underlying cognitive states. Figure 1 indicates the
stages of suggested BrainParcel method for brain decoding problem. Each stage
is explained in the following subsections.

2.1 Neighborhood System

In order to estimate a star mesh around each voxel independently, we need to
define a neighborhood system. The concept of neighborhood takes an important
place in this study. We inspire from the biological structure of human brain,
where spatially close neurons act together by means of some electro-chemical
interactions. Additionally, experimental evidence indicates that physically far
apart neurons may contribute to the same cognitive process through the brain
connectome. We try to utilize these observations in our brain parcellation model
by defining a neighborhood system around each voxel and employ multiple con-
nections between the neighboring voxels.

Neighborhood of the ith voxel vi, is defined as the set of voxels that are closest
to vi according to a predefined rule. Assuming pc many neighbors around a voxel,
neighborhood of vi is represented by ηpc

vi
.

Letting N be the number of voxels, we define an N−by−N adjacency matrix,
ND, to represent the neighborhood of voxels. Each entry of ND is calculated
as follows;

ND(i, j) =

{
1 , vj ∈ ηpc

vi

0 , otherwise.
(4)
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In this study, we define two types of neighborhood, given below:

Spatial neighborhood ηpc
vi

is defined as the set of voxels, which has the pc

smallest Euclidean distance in 3-Dimensional space to voxel vi. This neighbor-
hood system ensures resulting brain parcels to be spatially contiguous.

Functional neighborhood ηpc
vi

is defined as the set of voxels, which has the
highest pc-Pearson Correlation to voxel vi. This neighborhood system connects
functionally similar voxels, even if they are physically apart from each other.

Note that, selection of the number of neighbors, pc, and the type of the neigh-
borhood system highly effects the rest of the steps of BrainParcel. Specifically,
functional neighborhood relaxes the spatial similarity, selecting the neighboring
voxels which are physically far apart. Therefore, the resulting brain parcels are
not guaranteed to be spatially contiguous. It is very crucial to define a sort of
balance in these two types of neighborhood, so that the resulting brain parcels
consist of functionally similar and spatially contiguous voxels.

2.2 Extracting Mesh Arc Descriptors (MADs) Among Voxels

Each voxel is connected to its neighboring voxels according to one of the above
neighborhood systems to form a star mesh around that voxel. The structure of
star mesh depends on the type of the neighborhood system defined above. The
arc weights of each local mesh are estimated by adopting the mesh model of Onal
et al. [12–14]. As opposed to the current studies, we form the meshes, based on
the complete time series recorded at each voxel rather than forming a different
mesh for each cognitive task. This approach enables us to form a shared brain
partition across all of the cognitive tasks

fMRI technique collects a time series for each voxel, when the subject is
exposed to a cognitive stimulus. In the case of a block experiment design, which
we have used, subjects are exposed to a stimulus for a specific time interval and
the voxel time series over the entire brain volume are collected. Then, after a
rest period, another stimulus is given to the subject. The time series recorded
during a stimulus at ith voxel is represented by the vector vi. Based on the idea
of mesh model, we represent each vi as weighted sum of other voxels in the
ηpc

vi
neighborhood of vi according to Eq. 3. Notice that Mesh Arc Descriptors

(MADs) for classification are calculated per cognitive stimulus. However, we
compute MADs from the entire time series of the voxels. Therefore, k index,
which indicates a specific cognitive task, is removed from Eq. 3, since we compute
MADs for the entire time duration of fMRI recordings. This representation is
carried with a linear equation by the following formula;

vi =
∑

vj∈ηp
vi

ai,jvj + εi,j . (5)

Weights of the representation, called Mesh Arc Descriptors (MADs) are shown
as ai,j and are estimated by Regularized Ridge Regression which minimizes the
mean squared error ε2i,j [12–14].
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2.3 Constructing a Voxel-Level Brain Graph

In order to construct a brain graph from the estimated MADs, we ensemble all
the local meshes under the same graph, Gm = (V,Em). The set of nodes of
this graph correspond the set of voxels V = [v1,v2, . . .vN]. The set of edges
corresponds to set of all MADs, ai,jεEm. Note that, since ai,j �= aj,i, the graph
Gm is directed. On the other hand, the graph partitioning methods, such as
n-cut requires undirected graphs, in which each edge weight, ei,j is represented
by a scalar number. In order to obtain an undirected graph from the directed
graph Gm, a set of heuristic rules are used. Suppose that the mesh is formed
for the voxel vi, and vj is in the neighborhood of vi with mesh arc-weight ai,j .
Edge value ei,j is determined, based on the following rules:

– Case 1: IF vi /∈ ηpc
vj

AND vj ∈ ηpc
vi

THEN ei,j = ai,j

– Case 2: IF vi ∈ ηpc
vj

AND vj ∈ ηpc
vi

THEN this case requires further analysis.
Assuming highly correlated voxels should have a stronger edge between them,
we employ the following thresholding method;
IF corr(vi, vj) ≥ 0, THEN ei,j = max(ai,j , aj,i)
IF corr(vi, vj) < 0, THEN ei,j = min(ai,j , aj,i).

Above rules prune the directed graph Gm to an undirected graph G to be par-
titioned for obtaining homogeneous brain regions, called supervoxels.

2.4 Graph Partitioning for Obtaining Supervoxels

After constituting the brain graph G, n-cut segmentation method is used for
clustering this graph. N-cut is a graph partitioning algorithm which carries a
graph cut method on a given undirected graph. Given G, n-cut cuts the edges
one by one in an iterative manner. With each cut, the graph is split into two
smaller connected components. Letting N be the number of voxels, n-cut method
requires the representative graph G, which is actually an N − by − N adjacency
matrix explained in the previous sections. The number of intended brain parcels
is set to C. With graph cut operations, graph is split into C connected compo-
nents where C ≤ C. Each sample is a member of one of this clusters and assigned
with a cluster index. In other words, n-cut method returns an 1− by −N dimen-
sional vector LC = [lc1, l

c
2, . . . , l

c
N ] where each lci is a number between 1 and C.

The n-cut method, as applied to undirected graph G is called BrainParcel. The
output of this algorithm yields a set of supervoxels, which are homogeneous with
respect to the subgraphs of mesh network.

Recall that, anatomical regions (AAL) produce an experimentally neurosci-
entific parcellation of the brain. In order to compare the brain decoding perfor-
mances, we conducted our experiment, where we form mesh network for both
among anatomical regions and the network formed among supervoxels obtained
at the output of BrainParcel. There are 116 basic brain regions in AAL and
each voxel resides in one and only one region. Let us represent the anatomi-
cally defined region indices of voxels with LA = [la1 , la2 , . . . , laN ], in order to avoid
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confusions. Notice that, with LA we skip all of the brain parcellation steps. Also,
let us call L = [l1, l2, . . . , lN ] to all kinds of brain segmentations; in our case it
means L ⊃ (LC ∩ LA).

2.5 Representation of Supervoxels

We need to calculate a representative signal for each supervoxel. For this purpose,
we take an average among the time series of voxels within each supervoxel. With
C supervoxels, we calculate set of vectors U = [u1,u2, . . . ,uC], where each ui

is the representative vector of supervoxel i and they are calculated as follows;

ui =

∑
lj==i vj∑
lj==i 1

. (6)

In the dataset on which we have performed our experiments, six measure-
ments were taken for each cognitive stimulus. Assuming K stimuli were shown
to each subject, time series of each voxel has a length K = 6K. Therefore, at
the output of the clustering algorithm we construct a data matrix U of size
C − by − K, where each row represents a feature, and each column corresponds
to a cognitive stimulus.

2.6 Constructing Supervoxel-Level Brain Graph

The original area of utilization of the mesh model was to model the relationships
among voxels and use this relationship for decoding the cognitive processes. Both
spatial and functional neighborhoods were considered, and their representation
powers were demonstrated by relatively high recognition performances compared
to the available state of the art network models. Specifically, Functional Mesh
Model (FMM) outperform most of the MVPA and Spatial Mesh Model (SMM)
results. Therefore, we use FMM for classifying the cognitive states.

Data matrix U , defined in the previous section, is feed into the FMM algo-
rithm. Each supervoxel ui is represented by linear combination of its functional
neighbors, the arc weights are estimated at each mesh using Ridge Regression for
each cognitive stimulus. Recall that fMRI collects multiple measurements during
the time course of each cognitive stimulus. In our dataset 6 measurements are
collected for each stimulus, and ui is a vector of length K = 6K for K stimuli.
Let us represent the vector of the stimulus k by ui(k). First, functionally closest
pm neighbors of ui(k); ηpm

ui(k)
, are selected from the supervoxels uj which has the

highest correlation with supervoxel ui according to Pearson Correlation. Then,
the mean square error E(ε2i,j) is minimized to estimate ai,j,k of the Eq. 3. Esti-
mated MADs are concatenated so that they represent a more powerful feature
space compared to the raw fMRI signal intensity values that is used in MVPA
studies. We concatenate all the MADs and represent the stimulus in a feature
space formed by MADs.
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2.7 Classification

MADs estimated at supervoxel-level, are concatenated under a feature vector
for classifying the cognitive states. 6 fold cross validation schema is applied on
the dataset, where at each fold, one run is reserved from the data as a test set.
Logistic regression is used for classification.

3 Experiments

3.1 Dataset

In this study, we use a dataset called “Object Experiment”. This dataset is
recorded by the team of ImageLab of METU members at Bilkent University
UMRAM Center. It consists of 4 subjects in the age of twenties. Each subject is
shown various bird and flower pictures. In between those stimuli, simple math-
ematics questions are shown as transition. There are 6 runs in the experiment
and in each run, 36 pictures are shown to each subject. Thus, there are total
of 216 samples. Number of samples are balanced for the two classes (bird and
flower). Preprocessing of the dataset is carried with the SPM toolbox and the
number of voxels is decreased to 20,000 for each subject. Also, there are 116
labeled anatomical regions, defined under MNI coordinate system [19]. We pro-
vide experimental results, where each given accuracy is the output of a six fold
cross validation. Recall that, each subject is given 6 runs of stimuli. At each fold,
we split a run for testing and use the other 5 runs for training. The reported
accuracies are the average of these 6 folds for each subject.

3.2 Comparative Results

In this section, we provide a comparison between BrainParcel and the parcel-
lation algorithm suggested by Craddock et al. Table 1 shows the classification
performances for various number of parcels. The results are reported after opti-
mizing the mesh sizes empirically. Recall that, functionally constrained systems
that construct the graph with Functional ND neighborhood system does not
provide any spatial integrity within the brain parcels, since the brain graph is
not formed on these grounds. On the other hand, spatially constrained systems
provide both spatial continuity and functional homogeneity since the brain graph
is formed by spatial restrictions and edges are weighted in terms of functional
connectivity.

In Table 1, the first and third column give the best results for the brain par-
cellation method suggested by Craddock et al. (called classical, in the Table), and
the other two gives the results obtained by BrainParcel that we have proposed.
Each row of this table gives the results for a different number of supervoxels
(SV). Notice that spatially constrained BrainParcel gives the best classification
performances in the overall schema.

These results point to the idea that, in order to achieve better represen-
tational power for cognitive state classification, one needs spatially contiguous
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and functionally homogeneous brain parcels, which is accomplished by spatial
BrainParcel. Moreover, recall that we have offered BrainParcel as an alternative
to AAL, which has 116 basic anatomic regions and gives 53% performance on
average. A compatible parcellation scheme consists of 100 super voxels, where,
Spatial BrainParcel results in higher classification accuracies compared to the
other methods.

Table 1. Overall 2-class classification accuracy acquired from the MADs constructed
among super voxels and method suggested by Craddock et al. (called, classical). These
results suggest that Spatial BrainParcel gives higher performances, since it provides
spatial continuity and functional homogeneity within each brain parcel.

# of SV Spatial constraints Functional constraints

Classical BrainParcel Classical BrainParcel

100 67.79 74.00 70.63 73.29

250 72.96 78.71 76.79 77.54

500 75.46 79.42 77.33 77.54

750 77.46 78.04 79.38 77.54

1000 78.08 78.83 79.96 80.08

4 Conclusion

In this study, we offer a brain parcellation methodology, which combines the
spatial and functional connectivity of brain on a novel graph representation. This
approach offers a better alternative to the current brain parcellation methods
in the literature [8,18], for brain decoding problems. BrainParcel uses spectral
clustering methods, which represents the voxel space as a graph formed by mesh
model. Common studies compute the edge weights of the brain graph as the
pairwise correlation between voxels, whereas we computed the edge weights by
estimating them using the mesh model among a group of voxels. Then, brain
graph is partitioned with n-cut segmentation method to generate supervoxels.

As suggested, using task dependent brain parcellation methods enable better
brain decoding performances compared to anatomical regions. Moreover, it is
demonstrated that functional connectivity, united with the spatial contiguity is
the best approach to represent homogeneous brain regions.

Also, results show that using the MADs of the mesh model for classification,
improves the brain decoding performances in all of the experiment setups.

Our study reveals that mesh model not only improves the classification per-
formance, but also creates a brain graph, where the nodes represent homogeneous
super voxels with a better representation power for brain decoding. Although
the performance increase looks relatively small, when the large size of the data
set is considered, the performance boost becomes quite meaningful.

In the future, experimental set up can be refined for parameter selection.
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