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Abstract. Today a wealth of knowledge and data are distributed using
Semantic Web standards. Especially in the (bio)medical domain several
sources like SNOMED, NCI, FMA, and more are distributed in the form
of OWL ontologies. These can be matched and integrated in order to cre-
ate one large medical Knowledge Base. However, an important issue is
that the structure of these ontologies may be profoundly different hence
using the mappings as initially computed can lead to incoherences or
changes in their original structure which may affect applications. In this
paper we present a framework and novel approach for integrating inde-
pendently developed ontologies. Starting from an initial seed ontology
which may already be in use by an application, new sources are used to
iteratively enrich and extend the seed one. To deal with structural incom-
patibilities we present a novel fine-grained approach which is based on
mapping repair and alignment conservativity, formalise it and provide
an exact as well as approximate but practical algorithms. Our frame-
work has already been used to integrate a number of medical ontologies
and support real-world healthcare services provided by Babylon Health.
Finally, we also perform an experimental evaluation and compare with
state-of-the-art ontology integration systems that take into account the
structure and coherency of the integrated ontologies obtaining encour-
aging results.
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1 Introduction

Today a wealth of knowledge and data are distributed using Semantic Web tech-
nologies and standards. For example, the Linked Open Vocabularies effort [22]
contains more than 600 ontologies for various subjects like geography, multi-
media, security, geometry, and more. Especially in the biomedical domain, a
large number of ontologies have been developed during the previous decades like
SNOMED,1 NCI [5], UMLS,2 the Disease ontology [16] and many more, while
1 https://www.snomed.org/.
2 https://uts.nlm.nih.gov/home.html.
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Algorithm 1. postProcessKBStructure(O1,O2,M,Config)
Input: Two coherent ontologies O1, O2 and a set of mappings M between them.

1: Mm-1 := {〈Ci, D〉 | {〈Ci, D〉, 〈Cj , D〉} ⊆ M ∧ Ci �= Cj}.
2: M′ := M \ Mm-1

3: for all D ∈ Sig(O2) do
4: M′ := M′ ∪ disambiguate-m-1({〈Ci, D〉 | 〈Ci, D〉 ∈ Mm-1}, Config)
5: end for
6: Exclusions := ∅
7: ConflictSets := {{m1, m2} | O1 ∪ O2 ∪ {m1, m2} |= A 
 B, O1 �|= A 
 B}
8: for all {〈A, A′〉, 〈B, B′〉} ∈ ConflictSets with O2 |=rdfs A′ 
 B′ do
9: Exclusions := Exclusions ∪ {A′ 
 E | A′ 
 E ∈ O2, O2 |=rdfs E 
 B′}

10: end for
11: return 〈O2 \ Exclusions, M′〉

BioPortal [15] is a repository of more than 600 biomedical ontologies. Identifying
the common entities between these vocabularies and integrating them is benefi-
cial for building ontology-based applications as one could unify complementary
information that these vocabularies contain building a “complete” Knowledge
Base (KB).

The problem of computing correspondences (mappings) between different
ontologies is referred to as ontology matching or alignment [18]. A number of
ontology matching systems have been developed in the past and have shown
to behave well in practice. However, besides classes with their respective labels
ontologies usually bring a class hierarchy and depending on how they have been
conceptualised they may exhibit significant incompatibilities. For example, in
NCI proteins are declared to be disjoint from anatomical structures whereas in
FMA proteins are subclasses of anatomical structures. Hence, integrating them
without taking into account their logical axioms may lead to many undesired
consequences like unsatisfiable classes [11] and/or changes in their initial struc-
ture [6]. For these reasons the notions of conservative alignment [6,19,20] and
mapping repair [8,12] have been proposed in the literature. These notions dictate
that the mappings should not alter the original ontology structure or introduce
unsatisfiable concepts. If they do, then a so-called violation occurs which needs
to be repaired by discarding some of the mappings.

Unfortunately, dropping mappings introduces another problem which is the
increase of ambiguity and redundancy. For example, if one drops all mappings
between NCI and FMA proteins (due to their structural incompatibilities), then
the integrated ontology will contain at least two classes for the same real-world
entity. Apart from an unnecessary increase in the size of the integrated ontology
this introduces ambiguity and decreases interoperability between services that
use classes from the KB. The problem becomes more acute if further sources are
integrated in which case we may end up with multiple classes representing the
same real-world entity.
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Algorithm 2. postProcessNewOntoStructure(O1,O2,M,Config)
Input: Two ontologies O1, O2 and a set of mappings M computed between them.

1: M1-m := {〈C, Di〉 | {〈C, Di〉, 〈C, Dj〉} ⊆ M ∧ Di �= Dj}.
2: M′ := M \ M1-m

3: for all C ∈ Sig(O1) do
4: M′ := M′ ∪ disambiguate-1-m({〈C, Di〉 | 〈C, Di〉 ∈ M1-m}, Config)
5: end for
6: ConflictSets := {{m1, m2} | O1 ∪ O2 ∪ {m1, m2} |= A 
 B, O2 �|= A 
 B}
7: for all {〈D1, D

′
1〉, 〈D2, D

′
2〉} ∈ ConflictSets do

8: if no D such that O2 |=rdfs D 
 D′
1 � D′

2 exists then
9: if D′

1 
 ¬D′
2 ∈ O2 and C exist s.t. O1 ∪ O2 ∪ M′ |=rdfs C 
 D′

1 � D′
2 then

10: prune(M′ ∪ O2, {{〈D1, D
′
1〉, 〈D2, D

′
2〉}, {D′

1 
 ¬D′
2}})

11: else if semSim(D′
1, D

′
2) ≤ Config.Distance.thr then

12: prune(M′, {{〈D1, D
′
1〉, 〈D2, D

′
2〉}})

13: end if
14: end if
15: end for
16: return 〈O2, M′〉

An effort to construct a large medical KB by integrating existing medical
sources recently started in Babylon Health.3 The KB would serve as the back-
bone for healthcare services (diagnosis, drug prescription, and more) as well as
for other tasks like medical text annotation, understanding, and reasoning. For
these purposes a modular and highly configurable ontology integration frame-
work was implemented which is using ontology mapping to discover correspon-
dences between a new medical source and the current KB and enrich the latter
with new medical knowledge. There were two major requirements in this effort.
First, integrating new sources should not affect the behaviour of the services
already functioning with the KB, hence its structure should not change when
new sources are integrated. Moreover, the KB should not contain many enti-
ties with a large label overlap as this complicates text annotation tasks as well
as doctors who are selecting classes form the KB for diagnostic purposes. To
address these requirements our framework is using the notion of conservativity
for tracking the structural changes, however, in order to repair them we pro-
pose a novel fine-grained approach which avoids dropping mappings as much as
possible.

First, violations stemming from mappings of higher-multiplicity (i.e., those
that map two entities from one ontology to the same entity in the other) are
separated from the rest and both are treated differently since they are of different
nature. The former are repaired by altering the mappings, however, the latter
are repaired by dropping axioms from the new ontology. Our motivation is that
services have already committed to the structure of the KB and parts of the new
ontology that are in disagreement with this conceptualisation can be dropped. In

3 https://www.babylonhealth.com/.

https://www.babylonhealth.com/
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addition, this approach helps reduce ambiguity and duplication of the integrated
ontology as much as possible. Regarding violations on the structure of the new
ontology, again a distinction between mappings of higher-multiplicity and the
rest is made. The former are repaired by dropping mappings, however, the latter
can be allowed since, as stated, the hierarchy of the new ontology is given low
priority and various heuristics proposed in the literature can be used to guide
this process. We formalised our framework using the notion of a (maximal) safe
extension of a KB and provided an exact algorithm that is based on computing
all repair plans [6].

Unfortunately, detecting all repair plans is known to be computationally
very expensive [8,12]. Consequently, we next present a concrete implementa-
tion of our framework which is using approximate but efficient algorithms for
violation detection (all state-of-the-art systems are based on approximate algo-
rithms). Our implementation has already been used to create a medical KB by
integrating SNOMED, NCI, FMA, and CHV, and is currently under use within
Babylon. We conclude the paper with an experimental evaluation and a com-
parison against state-of-the-art mapping repair systems obtaining encouraging
results. In more detail, our implementation is currently the only one that can
apply a general conservativity-based mapping repair strategy (not only mapping
coherency detection) on such a large KB while the created KB contains far less
distinct classes with overlapping labels (i.e., less ambiguity and duplication). In
addition, it was the only approach for which no conservativity violations could
be detected in the integrated KB.

2 Ontologies and Ontology Matching

For brevity reasons, throughout the paper we will use Description Logic notation.
For a set of real numbers S we use ⊕S to denote the sum of its elements. For p
an ontology prefix and C some class we sometimes write p:C to denote that C
appears in ontology with prefix p. Hence, for IRI prefixes p1 �= p2, p1:C and p2:C
denote different classes. For an ontology O we use Sig(O) to denote the set of
classes that appear in O. Given an ontology O we assume that all classes C in O
have at least one triple of the form 〈C skos:prefLabel v〉 and zero or more triples
of the form 〈C skos:altLabel vi〉. For a given class C function pref(C) returns the
string value v in the triple 〈C skos:prefLabel v〉. An ontology is called coherent
if every C ∈ Sig(O) with C �= ⊥ is satisfiable.

In the literature, the notion of a Knowledge Base is almost identical to that
of an ontology, i.e., a set of axioms describing the entities of a domain. In the
following, we loosely use the term “Knowledge Base” (KB) to mean a possibly
large ontology that has been created by integrating various other ontologies but,
formally speaking, a KB is an OWL ontology.

Ontology matching (or ontology alignment) is the process of discovering cor-
respondences (mappings) between the entities of two ontologies O1 and O2. To
represent mappings we use the formulation presented in [12]. That is, a mapping
between O1 and O2 is a 4-tuple of the form 〈C,D, ρ, n〉, where C ∈ Sig(O1)
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D ∈ Sig(O2), ρ ∈ {≡,	,
} is the mapping type, and n ∈ (0, 1] is the confidence
value of the mapping. Moreover, we interpret mappings as DL axioms—that is,
〈C,D, ρ, n〉 can be seen as the axiom C ρ D with the degree attached as an
annotation. Hence, for a mapping 〈C,D, ρ, n〉 when we write O ∪ {〈C,D, ρ〉}
we mean O ∪ {C ρ D} while for a set of mappings M, O ∪ M denotes the set
O ∪ {m | m ∈ M}. When not relevant and for simplicity we will often omit ρ
and n and simply write 〈C,D〉. A matcher is an algorithm that takes as input
two ontologies and returns a set of mappings.

3 An Ontology Integration Framework

Large KBs can be constructed by integrating existing, complementary, and pos-
sibly overlapping ontologies. For example, in the biomedical domain, ontologies
for diseases, drugs, drug side-effects, genes, and so on, exist that can be inte-
grated in order to build a large medical KB. However, before putting two sources
together it would be beneficial to discover their overlapping parts and establish
mappings between their equivalent entities.

Example 1. Consider an ontology-based medical application that is using the
SNOMED ontology Osnmd as a KB. Although SNOMED is a large and well-
engineered ontology it is still missing medical information like textual definitions
for all classes as well as relations between diseases and symptoms. For example,
for class the notion of “Ewing Sarcoma” SNOMED only contains the axiom
snmd:EwingSarcoma 
 snmd:Sarcoma and no relations to signs or symptoms. In
contrast, the NCI ontology Onci contains the following axiom about this disease:

nci:EwingSarcoma 
 ∃nci:mayHaveSymptom.nci:Fever

We can use ontology matching to establish links between the related entities in
Osnmd and Onci and then integrate the two sources in order to enrich our KB.
More precisely, using the labels of the aforementioned classes we can identify the
following mappings:

m1 = 〈snmd:EwingSarcoma, nci:EwingSarcoma,≡〉
m2 = 〈snmd:Fever, nci:Fever,≡〉

and hence replace our KB with O′
snmd := Osnmd ∪ Onci ∪ {m1,m2}. Then, O′

snmd

contains the knowledge that “Ewing sarcoma may have fever as a symptom”. ♦
Unfortunately, it is well-known that integrating ontologies using the initially
computed mappings can lead to unexpected consequences like, introducing
unsatisfiable classes [11] or structural changes to the input ontologies [6].

Example 2. Consider again the SNOMED and NCI ontologies. Both ontologies
contain classes for the notion of “soft tissue disorder” and “epicondylitis”. Hence,
it is reasonable for a matching algorithm to compute the following mappings:

m1 = 〈snmd:SoftTissueDisorder, nci:SoftTissueDisorder,≡〉
m2 = 〈snmd:Epicondylitis, nci:Epicondylitis,≡〉
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Algorithm 3. KnowledgeBaseConstruction(KB,O,Config)
Input: The current KB KB, a new ontology O and a configuration Config.

1: Mappings := ∅
2: for all matcher : Config.Align.Matchers do
3: for all 〈C, D, ρ, n〉 ∈ matcher(KB, O) do
4: Mappings := Mappings ∪ {〈C, D, ρ, n, matcher〉}
5: end for
6: end for
7: Mf := ∅
8: w = ⊕{matcher.w | matcher ∈ Config.Align.Matchers}
9: for all 〈C, D, ρ, , 〉 ∈ Mappings such that no 〈C, D, ρ, n〉 exists in Mf do

10: n := ⊕{ni × matcher.w | 〈C, D, ρ, ni, matcher〉 ∈ M}/w
11: if n ≥ Config.Align.thr then
12: Mf := Mf ∪ {〈C, D, ρ, n〉}
13: end if
14: end for
15: 〈O′, Mf 〉 := postProcessNewOntoStructure(KB, O, Mf , Config)
16: 〈O′, Mf 〉 := postProcessKBStructure(KB, O′, Mf , Config)
17: return KB ∪ O′ ∪ Mf

However, in NCI we have Onci |= nci:Epicondylitis 
 nci:SoftTissueDisorder while
in SNOMED Osnmd �|= snmd:Epicondylitis 
 snmd:SoftTissueDisorder. Hence, in
the integrated ontology we will have:

Osnmd ∪ Onci ∪ {m1,m2} |= snmd:Epicondylitis 
 snmd:SoftTissueDisorder

introducing a relation between classes of Osnmd that did not originally hold and
which can have a significant impact on the services of our application which are
already based on the structure of Osnmd. ♦
The amount of such structural changes can be captured by the notion of logical
difference [9]. Like in [6] for performance reasons we also use an approximate
version of logical difference formalised next.

Definition 1 ([6]). Let A,B be atomic classes (including �,⊥), let Σ be a sig-
nature and let O and O′ be two OWL 2 ontologies. The approximation of the
Σ-deductive difference between O and O′ (denoted diff≈

Σ(O,O′)) as the set of
axioms of the form A 
 B satisfying: (i) A,B ∈ Σ, (ii) O �|= A 
 B, and (iii)
O′ |= A 
 B.

Using logical difference, the notion of a conservative alignment has been
proposed in the literature [6,19,20] which dictates that for two ontologies O1

and O2 and for Σ1 = Sig(O1) and Σ2 = Sig(O2) the set of mappings M must
be such that diff≈

Σ1
(O1,O1 ∪ O2 ∪ M) and diff≈

Σ2
(O2,O1 ∪ O2 ∪ M) are empty.

An axiom belonging to either of these sets is called a (conservativity) violation
and can be “repaired” by removing mappings form the initially computed sets.
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Based on the above we have designed a Knowledge Base construction algo-
rithm that is depicted in Algorithm 3. The algorithm accepts as input the current
KB KB, a new ontology O which will be used to enrich KB and a configura-
tion Config. The configuration is used to tune and change various parameters like
thresholds etc., many of which will be described in the rest of the paper. In brief,
the algorithm first applies a set of matchers in order to compute a set of map-
pings between KB and O (lines 1–6). The set of matchers to be used is specified
in the configuration object (Config.Align.Matchers) and each of them has a differ-
ent weight assigned (matcher.w). After all matcher have finished, the mappings
are aggregated and a threshold is applied (Config.Align.thr) in order to keep only
mappings with a high confidence (lines 7–14). As mentioned previously, these
mappings are still not the final ones since they may cause conservativity viola-
tions. These are handled by two functions, namely postProcessNewOntoStructure
and postProcessKBStructure which are discussed in detail in the next section.

4 Safe Ontology Integration

The typical approach to resolve conservativity violations so far has been to
remove mappings [6,8,19,20]. However, this approach may introduce other issues
like having distinct classes with a large overlap in their labels, hence introducing
redundancy and ambiguity. Assume for instance, that in Example 2 we drop map-
ping m2. Then, the integrated ontology will contain two different classes for the
real-world notion of “epicondylitis” (i.e., nci:Epicondylitis and snmd:Epicondylitis)
each with overlapping labels. Subsequently, a service that is using the former
class internally cannot interoperate with a service that is using the latter as
there is no axiom specifying that the two classes are actually the same.

Instead of removing mappings, another way to repair a violation is by remov-
ing axioms from one of the input ontologies.

Example 3. Consider again Example 2 where Osnmd serves as the current version
of the application KB. Instead of computing KBint

1 := Osnmd ∪ Onci ∪ {m1,m2}
as in Example 2 assume that we compute the following:

KBint
2 := KBint

1 \ {nci:Epicondylitis 
 nci:SoftTissueDisorder}

Then, we have KBint
2 �|= snmd:Epicondylitis 
 snmd:SoftTissueDisorder and hence

diff≈
Sig(Osnmd)

(Osnmd,KBint
2 ) = ∅ as desired. ♦

This approach is reasonable if we assume that an application is already using
some Knowledge Base and the role of new ontologies is to enrich and extend it
with new information but without altering its structure. Then, parts of the new
ontology that cause violations can be dropped.

However, not all violations can be repaired by removing axioms from O2.
This is the case for mappings of higher multiplicity, i.e., those that map two
different classes of one ontology to the same class in the other.
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Example 4. Consider again ontology Osnmd and Onci. SNOMED contains classes
Eczema and AtopicDermatitis whereas NCI contains class Eczema that also has
“Atopic Dermatitis” as an alternative label. Hence, a matching algorithm could
create two mappings of the form:

m1 = 〈snmd:Eczema, nci:Eczema,≡〉
m2 = 〈snmd:AtopicDermatitis, nci:Eczema,≡〉

which imply that snmd:Ezcema and snmd:AtopicDermatitis are equivalent
although this is not the case in Osnmd. ♦
In these cases it is clear that the only way to repair such violations is by alter-
ing the mapping set. One approach would be to drop one of the two map-
pings or perhaps even change their type from ≡ to 
 or 	 and we argue that
the choice is case dependent. In the previous example, we may decide that
SNOMED is more granular than NCI in the sense that Atopic Dermatitis is
a type of Eczema whereas the NCI term captures a more general notion. Hence,
we may decide to change the mappings to 〈snmd:Eczema, nci:Eczema,
〉 and
〈snmd:AtopicDermatitis, nci:Eczema,
〉. However, we may also conclude that the
alternative labels in NCI don’t strictly denote synonym (alternative) terms for
diseases but rather similar ones and hence decide to drop mapping m2.

Based on the above we introduce the notion of a safe extension of an ontology.

Definition 2. Let O1 and O2 be two ontologies and let M be a set of mappings
computed between them. The safe extension of O1 w.r.t. O2,M is a pair 〈O′,M′〉
such that O′ ⊆ O2,M′ ⊆ M and diff≈

Σ(O1,O1 ∪ O′ ∪ M′) = ∅ for Σ = Sig(O1).

The pair of an empty ontology and set of mappings (〈∅, ∅〉) is a trivial safe
extension but one is usually interested in some maximal safe extension similar
to the notion of diagnosis in mapping repair [8].

Definition 3. Let O1 and O2 be two ontologies and let M be a set of mappings
computed between them. A safe extension 〈O′,M′〉 of O1 w.r.t. O2,M is called
maximal if no safe extension 〈O′′,M′′〉 exists s.t. either O′′ ⊃ O′ or M′′ ⊃ M′.

Motivated by the above we have designed Algorithm 4 that accepts as input
two ontologies O1,O2 and returns a subset of O2 and a subset of M in an
attempt to compute a safe extension. The algorithm first processes mappings of
higher multiplicity w.r.t. entities in O1 using function disambiguate-m-1 whose
properties are formalised next.

Definition 4. Given a set of mappings M = {〈C1,D〉, 〈C2,D〉, . . . 〈Cn,D〉}
function disambiguate-m-1 returns a set M′ ⊆ M that satisfies the following
property: it contains either a single mapping of the form 〈Ci,D,≡〉 or only map-
pings of the form 〈Ci,D,	〉.

Afterwards, the algorithm calls algorithm allPlans [6] passing the appropriate
parameters in order to compute sets of axioms each of which has the following
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Algorithm 4. postProcessKBStructure(O1,O2,M,Config)
Input: Two coherent ontologies O1, O2, a set of mappings M, and a Config object.

1: Mm-1 := {〈Ci, D〉 | {〈Ci, D〉, 〈Cj , D〉} ⊆ M ∧ Ci �= Cj}.
2: M′ := M \ Mm-1

3: for all D ∈ Sig(O2) do
4: M′ := M′ ∪ disambiguate-m-1({〈Ci, D〉 | 〈Ci, D〉 ∈ Mm-1}, Config)
5: end for
6: P := allPlans(O1 ∪ O2 ∪ M′, O2, ∅, diff≈

Σ(O1, O1 ∪ O2 ∪ M′)) where Σ = Sig(O1)
7: Pick some P ∈ P such that no P ′ ∈ P exists with P ′ ⊂ P
8: return 〈O2 \ P, M′〉

property: if it is removed from O2 then all violations would be repaired. From
all those sets the algorithm picks some minimal one (w.r.t. ⊆) and removes it
from O2.

Lemma 1. Let O1 and O2 be two coherent ontologies and let M be a set of
mappings between them such that every class in O2 is satisfiable in O1∪O2∪M.
When applied on O1,O2 and M Algorithm 4 returns a maximal safe extension
of O1 w.r.t. O2,M.

Although, we are strict with respect to violations that are implied by the
mappings to the structure of the KB, we can be more relaxed with respect to
violations over the ontology that is being used for the enrichment. Several heuris-
tics have been presented in the literature in order to decide which violations to
allow and which to repair. A violation A 
 B ∈ diff≈

Sig(O2)(O2,O1 ∪ O2 ∪ M)
may be allowed if A and B are somehow semantically related, e.g., if A and B
have a common descendant [19]. In contrast, a violation should be repaired if
O2 |= A 
 ¬B, i.e., A and B are disjoint [11] or if the assumption of disjoint-
ness [13] can be applied to them—that is, if A and B are in different (distant)
parts of the hierarchy of O2 and hence we can assume that they are disjoint.

Motivated by the above we have designed Algorithm 5. Like before map-
pings of higher multiplicity are treated separately by function disambiguate-1-m.
Afterwards, the algorithm iterates over all violations w.r.t. ontology O2 and uses
many of the aforementioned heuristics, like common descendants (line 8), unsat-
isfiability of classes (lines 9–12) and semantic or taxonomical similarity using
function semSim and a pre-defined threshold Config.Distance.thr (lines 13–16) in
order to decide to repair them or not. To figure out how to repair a violation
algorithm allPlans is utilised again. This time M′ (and possibly O2) instead of
O1 is passed as a second parameter since we don’t want the plans to contain
axioms from O1. Note that in case some class A is unsatisfiable in the inte-
grated ontology either mappings from M′ or axioms from O2 that lead to this
unsatisfiability may be selected to be removed. This choice was motivated by the
conceptual differences between NCI and FMA regarding anatomical structures
and proteins which are disjoint in one ontology but semantically related in the
other. The choice of which plan to pick to remove is again case dependent hence
we abstract this away using the function prune which picks at-least one plan.
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Algorithm 5. postProcessNewOntoStructure(O1,O2,M,Config)
Input: Ontologies O1, O2, set of mappings M, and Config object.

1: M1-m := {〈C, Di〉 | {〈C, Di〉, 〈C, Dj〉} ⊆ M ∧ Di �= Dj}.
2: M′ := M \ M1-m

3: for all C ∈ Sig(O1) do
4: M′ := M′ ∪ disambiguate-1-m({〈C, Di〉 | 〈C, Di〉 ∈ M1-m}, Config)
5: end for
6: LDiff := diff≈

Σ(O2, O1 ∪ O2 ∪ M′) where Σ = Sig(O2)
7: for all A 
 B ∈ LDiff do
8: if no C such that O2 |= C 
 A � B exists then
9: if B = ⊥ then

10: O¬
2 := {C 
 ¬D | C 
 ¬D ∈ O2}

11: P := allPlans(O1 ∪ O2 ∪ M′, O¬
2 ∪ M′, ∅, {A 
 ⊥})

12: prune(M′ ∪ O2, P)
13: else if semSim(A, B) ≤ Config.Distance.thr then
14: P := allPlans(O1 ∪ O2 ∪ M′, M′, ∅, {A 
 B})
15: prune(M′, P)
16: end if
17: end if
18: end for
19: return 〈O2, M′〉

Lemma 2. Let O1 and O2 be two coherent ontologies and let M be a set of
mappings between them. When applied on O1,O2 and M Algorithm 5 returns a
pair 〈O′,M′〉 such that every class in O′ is satisfiable in O1 ∪ O′ ∪ M′.

Using Lemmas 1 and 2 we can show the main result of our paper.

Theorem 1. Let KB and O be two coherent ontologies, let Config be some con-
figuration and let KB′ be the output of Algorithm 3 when applied on KB,O and
Config. Then the following hold:

1. diff≈
Σ(KB,KB′) = ∅ where Σ = Sig(KB).

2. KB′ is coherent.

5 Practical Algorithms

We have provided with concrete implementations of the algorithms and functions
presented in the previous section. Regarding matching (lines 2–6 of Algorithm 3),
two in-house label-based matchers have been implemented, namely ExactLa-
belMatcher and FuzzyStringMatcher. The former builds an inverted index of
class labels [3] after some string normalisations, like removing possessive cases
(e.g., Alzheimer’s) and singularisation [10], and matches ontologies using these
indexes. The latter is based on the ISub string similarity metric [21]. Since this
algorithm does not scale well on large inputs [3] it is mostly used for disambiguat-
ing higher-multiplicity mappings or if we wish to re-score subsets of mappings
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Algorithm 6. planApproximation(O1,O2,M)
Input: Two ontologies O1 and O2 a set of mappings between them.

1: Exclusions := ∅
2: ConflictSets := {{m1, m2} | O1 ∪ O2 ∪ {m1, m2} |=rdfs A 
 B, O1 �|=rdfs A 
 B}
3: for all {〈A, A′〉, 〈B, B′〉} ∈ ConflictSets with O2 |=rdfs A′ 
 B′ do
4: Exclusions := Exclusions ∪ {A′ 
 E | A′ 
 E ∈ O2, O2 |=rdfs E 
 B′}
5: end for
6: return Exclusions

with low confidence degrees. In addition to these matchers, the state-of-the-art
systems AML [4] and LogMap [7] can also be used in Algorithm 3.

Regarding functions disambiguate-m-1 and disambiguate-1-m the following
strategy has been implemented so far:

For a set of mappings {〈C1,D〉, 〈C2,D〉, . . . , 〈Cn,D〉} and some real-value
threshold Config.Disamb.th, if i ∈ [1, n] exists such that the following two
conditions hold:
1. ISub(pref(Ci), pref(D)) > ISub(pref(Cj), pref(D)) for every j �= i and
2. ISub(pref(Ci), pref(D)) ≥ Config.Disamb.th

then return 〈Ci,D〉. Similarly in function disambiguate-1-m for sets of map-
pings of the form {〈C,D1〉, 〈C,D2〉, . . . , 〈C,Dn〉}.

A major practical consideration of Algorithms 4 and 5 is the call to algo-
rithm allPlans. This algorithm does not scale in practice since it iterates over the
power-set of the second parameter (i.e., O2) [6]. Consequently, as usually done
in literature [8,19] we are using approximations of plan computation and viola-
tion repair. More precisely, lines 6 and 7 in Algorithm 4 are replaced by the call
P := planApproximation(O1,O2,M′) where the implementation of this function
is given in Algorithm 6 and is inspired by the Alcomo repair algorithm [8,12].
This algorithm is based on the assumption that logical differences of the form
A 
 B stem from exactly two mappings which map classes A and B for which
O1 �|= A 
 B to classes A′ and B′ in O2 for which a path of SubClassOf axioms
in O2 exists (|=rdfs), hence implying changes in the structure of O1. Although
in theory this may not always be the case, most violations in practice do follow
this pattern. For every such pair of mappings the algorithm picks to remove from
O2 some axiom of the form A′ 
 E, i.e., it tries in some sense to remove the
“weakest” axiom from O2. This choice is motivated by belief revision and the
principle of minimal change [1].

Example 5. Consider for example the following two ontologies:

O1 = {D 
 C,C 
 B}
O2 = {W 
 Z,Z 
 Y, Y 
 X}

and assume the set of mappings M = {m1,m2} where m1 = 〈D,Y 〉 and m2 =
〈B,W 〉. Clearly, for Σ = Sig(O1) we have B 
 D ∈ diff≈

Σ(O1,O1 ∪O2 ∪M) and
we can repair this violation by either removing ax1 = W 
 Z or ax2 = Z 
 Y .
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Algorithm 7. newOntologyApproximate(O1,O2,M)
1: ConflictSets := {{m1, m2} | O1 ∪ O2 ∪ {m1, m2} |=rdfs A 
 B, O2 �|= A 
 B}
2: for all {〈D1, D

′
1〉, 〈D2, D

′
2〉} ∈ ConflictSets do

3: if no D such that O2 |=rdfs D 
 D′
1 � D′

2 exists then
4: if D′

1 
 ¬D′
2 ∈ O2 and C exist s.t. O1 ∪ O2 ∪ M′ |=rdfs C 
 D′

1 � D′
2 then

5: prune(M′ ∪ O2, {{〈D1, D
′
1〉, 〈D2, D

′
2〉}, {D′

1 
 ¬D′
2}})

6: else if semSim(D′
1, D

′
2) ≤ Config.Distance.thr then

7: prune(M′, {{〈D1, D
′
1〉, 〈D2, D

′
2〉}})

8: end if
9: end if

10: end for

Ontologies O1 and O2 as well as KBs KBint
ax1

= O1 ∪ O2 \ {ax1} ∪ M and
KBint

ax2
= O1 ∪ O2 ∪ \{ax1} ∪ M are depicted graphically in Fig. 1, where solid

lines denote subclass relations, and dashed lines the two mappings. As we can
see, although both integrated ontologies do not exhibit violations over O1, the
two cases differ in the amount of changes they impose on the classes of O1. More
precisely, for S(O1,O2,M) = {A 
 B | A ∈ Sig(O1),O1∪O2∪M |= A 
 B} we
have S(O1,O2\{ax2},M)\S(O1,O2\{ax1},M) = {B 
 Z,C 
 Z,D 
 Z,D 

X}. Indeed, in this scenario Algorithm 5 will compute Exclusions := {ax1}. ♦

Fig. 1. Ontologies of Example 5 and resulting KBs; with bold we denote classes from
O2.

Following a similar approach, the block of lines 6–18 in Algorithm 5 is
replaced by the steps depicted in Algorithm 7. Again these steps assume that
violations stem from pairs of “conflicting” mappings like those mentioned above.
Similarly to Algorithm 5, we are again using the heuristics of common descen-
dants, disjoint classes and class similarity as a guide for repairing the violations;
all entailments are checked using RDFS-entailment.

Using Algorithm 3 and the techniques presented above we have started build-
ing a large medical KB to be used within Babylon Health. We used the SNOMED
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January 2018 release (which contains 340K classes and 511K SubClassOf
axioms) as a starting seed KB (KB1) and have so far iteratively integrated the
following ontologies: NCI version 17.12d (which contains 130K classes and 143K
SubClassOf axioms), CHV latest version from 2011 (which contains 57 K classes
and 0 SubClassOf axioms) and FMA version 4.6.0 (which contains 104K classes
and 255K SubClassOf axioms); all ontologies are from the official websites. As
a matching algorithm we have so far used our ExactLabelMatcher. Statistics
about the KBs that we created after each integration are depicted in Table 1.
CHV is a flat list of layman terms of medical concepts. From that ontology we
only integrated label information for the classes in CHV that mapped to some
class in the Babylon KB; hence only data type properties increased in the KB in
that step. The final KB is currently under use by various services within Babylon
and we are in the process of also integrating the following resources: SNOMED
drug extensions, ICD-10, Read Codes, MeSH, and more.

Table 1. Statistics about the KB after each integration/enrichment iteration.

SNOMED +NCI +CHV +FMA

Classes 340 995 429 241 429 241 524 837

Properties 93 124 124 219

SubClassOf axioms 511 656 617 542 617 542 713 313

ObjPropAssertions 526 146 664 742 664 742 962 190

DataPropAssertions 543 416 946 801 1 043 874 1 211 459

6 Evaluation

We have conducted an experimental evaluation in order to assess the effectiveness
of our approach for integrating ontologies and remedying conservativity viola-
tions. Using SNOMED as our initial Knowledge Base we once integrated NCI and
then FMA (starting again from scratch). We used our ExactLabelMatcher once
with and once without the last post-processing steps in Algorithm 3 (lines 15
and 16). In the following we call the former setting bOWLing and the latter
bOWLingn. We used the latter setting as a “naive” baseline approach.

In addition, we also run Algorithm 3 using AML and two versions of LogMap
called LogMapo and LogMapc in the following. AML and LogMapo repair map-
pings with respect to coherency, i.e., they only check for conservativity violations
that lead to unsatisfiable classes. NCI contains 196 while FMA 33.5K disjoint
classes axioms so this mapping repair is relevant. In contrast, LogMapc also
checks for more general conservativity violations using the techniques presented
in [19]. For all these systems we disabled the post-processing steps of Algo-
rithm 3 in order to assess their mapping repair functionality. On the mapping
sets computed by bOWLingn and LogMapo we have also run Alcomo [12] as a
post-processing step. Alcomo is not a general matcher but a mapping repair
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system that can be used as a post-processing step. In the following we denote
these settings as bOWLingAlcn and LogMapAlco .

Algorithm 3 did not terminate with AML and LogMapc after running for
more than 16 h. As a second attempt we fragmented the ontologies into modules
(using a 
-reachability based algorithm starting from top-level classes) and fed
these one by one to Algorithm 3. For NCI we extracted 53 while for FMA 6
modules. Even in this case AML did not terminate when integrating FMA.

Table 2. Evaluation results

SNOMED+NCI

|M| |KBint| |LDiff| Time Loops ambiguity

bOWLingn 30 675 677 939 t.o. 12.7 127 16 708

bOWLingAlc
n 26 825 666 834 0.9m 35.9 100 17 177

bOWLing 19 258 638 702 0 12.2 0 7 810

LogMapo 27 967 664 837 1.7m 120.9 74 17 632

LogMapAlc
o 27 763 664 354 1.5m 141.7 71 16 986

LogMapc 21 838 433 711 897 54.4 0 8,266

AML 32 623 635 876 t.o. 75.0 298 14 353

SNOMED+FMA

|M| |KBint| |LDiff| Time Loops ambiguity

bOWLingn 8 809 614 728 240k 7.0 3 1 946

bOWLingAlc
n 7 886 615 291 93k 76.2 1 2 000

bOWLing 8 176 608 060 0 27.9 0 1 440

LogMapo 7 334 615 252 117k 360.4 1 2 264

LogMapAlc
o 6 986 615 689 57k 428.4 1 2 253

LogMapc 6 036 420 424 517 14 004.8 0 1 553

Our results are summarised in Table 2 where we give the number of computed
mappings (|M|), the number of SubClassOf axioms in the integrated ontology
(|KBint|), the number of axioms in diff≈

Sig(KB)(KB,KBint) (denoted by |LDiff| and
with “m” denoting millions), and the time to compute KBint (in minutes). Due
to the very large size of the KB LDiff cannot be computed by any OWL reasoner
so we computed the RDFS-level differences by simply traversing the SubClassOf
hierarchy of the KB. In addition, we have also computed the following:

– number of cycles of the form {A1 
 A2, . . . , An 
 A1} ⊆ KBint. From a
semantic point of view such cycles are not problematic, however, they do
complicate graph-based algorithms like hierarchy traversal, extracting paths
and depth counting, hence it is a design decision in Babylon to avoid them;
input ontologies contain no cycles.
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– a notion of “ambiguity” which we defined as the number of times a label
appears in two different classes of a given ontology. We also calculated this
metric over the original SNOMED, NCI, and FMA ontologies in order to mea-
sure their level of ambiguity. We obtained 1 055, 4 873, and 282, respectively,
e.g., in SNOMED 1 055 labels appear in multiple classes.

First thing to note from the table is that all systems compute mapping sets of
comparable size with the exception of bOWLing on SNOMED+NCI which com-
putes a smaller mapping sets. This is mostly due to functions disambiguate-m-1
and disambiguate-1-m which prune mappings of higher-multiplicity. However,
we should note that all mappings computed by this approach are one-to-one
mappings, while in all other approaches from the roughly 27k mappings about
17k are actually one-to-one (i.e., fewer than those of bOWLing). The application
of Alcomo on the mapping sets does remove some mappings in an attempt to
repair the sets while LogMapc that uses a general conservativity-based repairing
approach also computes fewer mappings than LogMapo.

As expected, the ontology produced by bOWLing contains fewer axioms due
to the axiom exclusion strategy implemented in line 16 of Algorithm 3 which
drops about 30% of NCI axioms and 10% of FMA axioms. However, the gains
from this approach are apparent when considering other computed metrics. More
precisely, the integrated ontology produced by bOWLing contains no axioms in
LDiff in contrast to even more than 1 million new ancestor classes in some of the
other approaches. Moreover, there are no cycles and, finally, a very low degree
of ambiguity taking also into account the initial ambiguity of these ontologies
(see above). The use of Alcomo as a post-processing step on bOWLingn and
LogMapo does improve the numbers on these metrics, however, as it only focuses
on coherency and not general conservativity it does not eliminate them com-
pletely. The only comparable approach is LogMapc which computes a KB without
cycles. However, LDiff is still not empty and the approach of dropping mappings
increases the ambiguity metric. Recall that we were only able to run LogMapc on
the modules. Had it run on the whole ontology we believe the reported numbers
would be higher since as one can note the integrated ontology in this module app-
roach is also much smaller (almost 1/3 smaller). Finally, compared to all other
systems our approach is much more scalable requiring a few minutes whereas in
all other settings Algorithm 3 could take from one even up to 4 h (even when
restricted to the modules). Note that in some cases we could not compute LDiff
even after 12 h (t.o.).

7 Related Work and Conclusions

Constructing large Knowledge Bases (also called Knowledge Graphs these days)
is a topic of intensive research and engineering the last years. The works [2,17]
focus on extracting medical facts from text and use ontologies like UMLS and
SNOMED mostly as flat vocabularies for performing named entity disambigua-
tion, text annotation and information extraction. Hence, the focus is not on
merging the medical knowledge and “fusing” the hierarchies. Malacards [14] is an
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effort for constructing a large disease KB by integrating information from many
existing disease ontologies. To identify the overlaps between different sources
a label-based unification algorithm is used which is very similar to our Exact-
LabelMatcher (labels are normalised, stemmed, singularised, etc. and a hash
is created). However, this approach completely discards the hierarchy and the
axioms of the original ontologies and the final output is a flat non-ontological
structure.

In the current paper we have studied the problem of building large KBs from
existing ontologies by integrating them and retaining as much of their initial
structure and axioms as possible. Starting with an initial ontology as a seed KB
we use new ontologies to extend and enrich it in an iterative way. Overlaps are
discovered using ontology matching algorithms and mappings are post-processed
in order to preserve properties of the structures of the KB and the new ontol-
ogy. The algorithm is highly modular as different strategies for handling higher-
multiplicity mappings can be implemented and different (or multiple) matchers
can be used. Our post-processing steps are based on the notion of conservativity
but differently than what is usually done in the literature [6,13,19] we propose
to remove axioms from the new ontology in order to repair many of the vio-
lations. This is important in order to keep ambiguity low and not have many
classes with overlapping labels. We have formalised our framework, designed
an exact general algorithm and also presented concrete approximate and prac-
tical algorithms. These have already been used in Babylon Health to build a
medical Knowledge Base (using SNOMED, NCI, FMA, and CHV) that forms
the data and knowledge backbone of various clinical services. Finally, we have
conducted an experimental evaluation comparing our conservativity repairing
approach to state-of-the-art mapping repair systems obtaining very encouraging
results. In summary, our results verify that ambiguity is very-low (almost none
introduced compared to the initial ambiguity of the input ontologies), there were
no detectable violations (LDiff), no cycles, and our algorithm scales.

8 Proofs

Lemma 1. Let O1 and O2 be two coherent ontologies and let M be a set of
mappings between them such that every class in O2 is satisfiable in O1∪O2∪M.
When applied on O1,O2 and M Algorithm 4 returns a minimal safe extension
of O1 w.r.t. O2,M.

Proof. Let 〈O′,M′〉 be the output of Algorithm 4 when applied on O1,O2, and
M. O′ = O2 \ P for some P ∈ P and since the second parameter of the call to
function allPlans is O2, then for every such P we have P ⊆ O2; hence O′ ⊆ O2.

Next we show that for Σ = Sig(O1) we have diff≈
Σ(O1,O1 ∪ O′ ∪ M′) = ∅.

Let some A 
 B ∈ diff≈
Σ(O1,O1 ∪ O2 ∪ M) and assume to the contrary that we

have A 
 B ∈ diff≈
Σ(O1,O1 ∪ O′ ∪ M′). By definition we have O1 �|= A 
 B,

hence A �= B.
Consider some arbitrary justification J for O1 ∪ O′ ∪ M′ |= A 
 B. If

J ⊆ M′ then we have that O1 ∪ M′ |= A 
 B. Since O1 �|= A 
 B and all
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mappings relate classes from O1 to classes in O2 this can only be the case if
these mappings in J map two classes from O1 to the same class in O2: we can
use resolution to prove O1 ∪ M′ |= A 
 B in the process of which one of the
mappings will introduce a symbol from O2; since every symbol of O2 is satisfiable
in O1∪O2∪M it can only be removed by resolving it with another mapping that
refers it and thus there must be two mappings that map two different classes of
O1 to the same symbol in O2. However, this is not possible due to the properties
of function disambiguate-m-1 which has eliminated from M′ mappings of higher
multiplicity.

Hence, every justifications J of every violation α ∈ diff≈
Σ(O1,O1 ∪O2 ∪M′),

J must contain axioms from O2. But then, by Proposition 10 in [6] we have that
P contains all P such that O1∪O2\P∪M �|= α, hence diff≈

Σ(O1,O1∪O′∪M′) = ∅.
Finally, the maximality condition on O′ is satisfied by selecting some minimal

w.r.t. ⊆ plan from P in line 7. ��
Lemma 2. Let O1 and O2 be two coherent ontologies and let M be a set of
mappings between them. When applied on O1,O2 and M Algorithm 5 returns a
pair 〈O′,M′〉 such that every class in O′ is satisfiable in O1 ∪ O′ ∪ M′.

Proof. Assume that some arbitrary class A is unsatisfiable in O′ ∪ M′. Since
O2 is coherent and O′ ⊆ O2, then A is also satisfiable in O′. Hence we must
have that A 
 ⊥ ∈ LDiff. Again by coherency of O2 no C exists such that
O2 |= C 
 A � ⊥, hence the algorithm enters block 9–12 and computes a plan
for repairing this unsatisfiability (A 
 ⊥). Like in the proof of Lemma 1 a repair
plan containing only mappings from M′ exists. Due to the parameters used to
call allPlans a repair plan containing disjointness axioms from O2 may also be
present in P. Thus, the call to allPlans with second argument M′ ∪ O2 returns
some non-empty repair plan which is removed form M′ ∪O2 at line 12 repairing
this unsatisfiability and contradicting the initial assumption. ��
Theorem 1. Let KB and O be two coherent ontologies, let Config be some con-
figuration and let KB′ be the output of Algorithm 3 when applied on KB,O and
Config. Then the following hold:

1. diff≈
Σ(KB,KB′) = ∅ where Σ = Sig(KB).

2. KB′ is coherent.

Proof. By Lemma 2 every class in O′ that is passed as a second parameter
in function postProcessKBStructure is satisfiable in KB ∪ O′ ∪ M′. Hence, by
Lemma 1 it follows that 〈O′,M′〉 returned by Algorithm 4 in line 16 is a safe
extension of KB hence item 1. holds.

For item 2, by Lemma 2 and since function postProcessKBStructure only
removes axioms from O′ it follows trivially that all classes of O′ are satisfiable
in KB ∪ O′ ∪ M′. Consider some class A in KB. Since KB is coherent then A is
satisfiable in KB and by item 1. this class is also satisfiable in O′

KG for otherwise
we would have A 
 ⊥ ∈ diff≈

Σ(KB,KB′). ��
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