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Abstract. Recently, the cycle-consistent generative adversarial net-
works (CycleGAN) has been widely used for synthesis of multi-domain
medical images. The domain-specific nonlinear deformations captured
by CycleGAN make the synthesized images difficult to be used for some
applications, for example, generating pseudo-CT for PET-MR attenua-
tion correction. This paper presents a deformation-invariant CycleGAN
(DicycleGAN) method using deformable convolutional layers and new
cycle-consistency losses. Its robustness dealing with data that suffer from
domain-specific nonlinear deformations has been evaluated through com-
parison experiments performed on a multi-sequence brain MR dataset
and a multi-modality abdominal dataset. Our method has displayed its
ability to generate synthesized data that is aligned with the source while
maintaining a proper quality of signal compared to CycleGAN-generated
data. The proposed model also obtained comparable performance with
CycleGAN when data from the source and target domains are alignable
through simple affine transformations.
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1 Introduction

Modern clinical practices make cross-domain medical image synthesis a technol-
ogy gaining in popularity. (In this paper, we use the term “domain” to uniformly
address different imaging modalities and parametric configurations.) Image syn-
thesis allows one to handle and impute data of missing domains in standard
statistical analysis [1], or to improve intermediate step of analysis such as regis-
tration [2], segmentation [3] and disease classification [4]. Our application is to
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generate pseudo-CT images from multi-sequence MR data [5]. The synthesized
pseudo-CT images can be further used for the purpose of PET-MR attenuation
correction [6].

State-of-the-art methods often train a deep convolutional neural network
(CNN) as image generator following the learning procedure of the generative
adversarial network (GAN) [7]. Many of these methods require to use aligned,
or paired, datasets which is hard to obtain in practice when the data can not be
aligned through an affine transformation. To deal with unpaired cross-domain
data, a recent trend is to leverage CycleGAN losses [8] into the learning process
to capture high-level information translatable between domains. Previous stud-
ies have shown that CycleGAN is robust to unpaired data [9]. However, not all
information encoded in CycleGAN image generators should be used due to very
distinct imaging qualities and characteristics in different domains, especially dif-
ferent modalities. Figure 1 displays a representative example of CycleGAN based
cross-modality synthesis where the real CT and MR data were acquired from the
same patient. It can be seen that the shape and relative positions of the scan-
ner beds are very different. This problem can be addressed as “domain-specific
deformation”. Because the generator networks can not treat the spatial defor-
mation and image contents separately, CycleGAN encodes this information and
reproduce it in the forward pass, which causes misalignment between the source
and synthesized images. For some applications, such as generating pseudo-CT for
attenuation correction of PET-MR data, this domain-specific deformation should
be discarded. In the mean time, the networks should keep efficient information
about appearences of the same anatomy in distinct domains. A popular strategy
to solve this problem is performing supervised or semi-supervised learning with
an extra mission, for example, segmentation [10], but this requires collection of
extra ground truth.

In this paper, we present a deformation invariant CycleGAN (DicycleGAN)
framework for cross-domain medical image synthesis. The architecture of the
networks is inspired by the design of deformable convolutional network (DCN)
[11]. We handle the different nonlinear deformations in different domains by inte-
grating a modified DCN structure into the image generators and propose to use
normalized mutual information (NMI) in the CycleGAN loss. We evaluate the
proposed network using both multi-modality abdominal aortic data and multi-
sequence brain MR data. The experimental results demonstrate the ability of
our method to handle highly disparate imaging domains and generate synthe-
sized images aligned with the source data. In the mean time, the quality of the
synthesized images are as good as those generated by the CycleGAN model.
The main contributions of this paper include a new DicycleGAN architecture
which learns deformation-invariant correspondences between domains and a new
NMI-based cycleGAN loss.



54 C. Wang et al.

Table 1. Synthesis results of IXI dataset using undeformed T2 images.

Experiment Model MSE PSNR SSIM

PD to T2 Cycle 0.186 (0.08) 27.35 (1.69) 0.854 (0.03)

Dicycle 0.183 (0.09) 26.49 (1.62) 0.871 (0.03)

T2 to PD Cycle 0.134 (0.02) 29.68 (1.61) 0.892 (0.03)

Dicycle 0.146 (0.03) 28.85 (1.59) 0.883 (0.02)

2 Method

A GAN framework using a image generator G to synthesize images of a target
domain using images from a source domain, and a discriminator D to distinguish
real and synthesized images. Parameters of G are optimized to confuse D, while
D is trained at the same time for better binary classification performance to
classify real and synthesized data. We assumes that we have nA images xA ∈ X A

from domain X A, and nB images xB ∈ X B . To generate synthesized images of
domain X B using images from X A, G and D are trained in the min-max game
of the GAN loss LGAN

(
G,D,X A,X B

)
[7]. When dealing with unpaired data,

the original CycleGAN framework consists of two symmetric sets of generators
GA→B and GB→A act as mapping functions applied to a source domain, and two
discriminators DB and DA to distinguish real and synthesized data for a target
domain. The cycle consistency loss Lcyc

(
GA→B ,DA, GB→A,DB ,X A,X B

)
, or

LA,B
cyc , is used to keep the cycle-consistency between the two sets of networks.

The loss of the whole CycleGAN framework LCycleGAN = LA→B
GAN + LB→A

GAN +
λcycLA,B

cyc . (In this paper we use the short expression LA→B
GAN to denote GAN loss

LGAN (GA→B ,DB ,X A,X B)). The image generator in the CycleGAN contains
an input convolutional block, two down-sampling convolutional layers, followed
by a few resnet blocks or a Unet structure, and two up-sampling transpose
convolutional blocks before the last two convolutional blocks.

Fig. 1. Example of MR-CT synthesis using vanila CycleGAN.
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DicycleGAN Architecture. In order to capture deformation-invariant infor-
mation between domains, we introduce a modified DCN architecture into the
image generators of CycleGAN, as shown in Fig. 2. The deformable convolution
can be viewed as an atrous convolution kernel with trainable dilation rates and
reinterpolated input feature map [11]. The spatial offsets of each point in the
feature map is learned through a conventional convolution operation, followed by
another convolution layer. This leads to a “Lasagne” structure consist of inter-
leaved “offset convolution” and conventional convolution operations. We adopt
this structure to the generators by inserting an offset convolutional operation
(displayed in cyan in Fig. 2) in front of the input convolutional block, down-
sample convolutional blocks and the first resnet blocks. Note that this “offset”
convolution only affects the interpolation of the input feature map rather than
providing a real convolution result. Let θT denote the learnable parameters in
the“offset” convolutional layers, and θ the rest parameters in image generator
G. When training G, each input image x generates two output images: deformed
output image GT (x) = G (x|θ, θT ) and undeformed image G(x) = G (x|θ). The
red and blue arrows in Fig. 2 indicate the computation flows for generating GT (x)
and G(x) in the forward passes. GT (x) is then taken by the corresponding dis-
criminator D for calculation of GAN losses, and G(x) is expected to be aligned
with x.

Fig. 2. Architecture of the proposed image generator G(·). Each input image x gen-
erates a deformed output G(x|θ, θT ) and an undeformed output G(x|θ) through two
forward passes shown in red and blue. Demonstration of deformable convolution is
obtained from [11]. (best viewed in color)

DicycleGAN Loss. DicycleGAN loss contains traditional GAN loss following
the implementation of CycleGAN [8], but also includes an image alignment loss
and a new cycle consistency loss. For the GAN loss LA→B

GAN , the image generator
GA→B is trained to minimize

(
DB

(
GA→B

T

(
xA

)) − 1
)2 and DB is trained to



56 C. Wang et al.

minimize
(
DB(xB) − 1

)2 + DB
(
GA→B

T (xA)
)2. The same formulation is used to

calculate LB→A
GAN defined on GB→A and DA. Note that the GAN loss is calcu-

lated based on the deformed synthesized images. As the undeformed outputs of
generators are expected to be aligned with the input images, we propose to use
a information loss based on normalized mutual information (NMI). NMI is a
popular metric used for image registration. It varies between 0 and 1 indicating
alignment of two clustered images [12]. The image alignment loss is defined as:

LA,B
align = 2 − NMI

(
xA, GA→B

(
xA

)) − NMI
(
xB , GB→A

(
xB

))
. (1)

Based on the proposed design of image generators, the cycle two types of cycle
consistency losses. The undeformed cycle consistency loss is defined as:

LA,B
cyc = ‖GB→A

(
GA→B

(
xA

)) − xA‖1 + ‖GA→B
(
GB→A

(
xB

)) − xB‖1. (2)

Beside Lcyc, the deformation applied to the synthesized image should be also
cycle consistent. Here we defined a deformation-invariant cycle consistency loss:

LA,B
dicyc = ‖GB→A

T

(
GA→B

T

(
xA

)) − xA‖1 + ‖GA→B
T

(
GB→A

T

(
xB

)) − xB‖1. (3)

To perform image synthesis between domains X A and X B , we use the deformed
output images GA→B

T and GB→A
T to calculate the GAN loss. The full loss of

DicycleGAN is:

LDicycleGAN = LA→B
GAN + LB→A

GAN + λalignLA,B
align + λcycLA,B

cyc + λdicycLA,B
dicyc. (4)

Figure 3 provides a demonstration of computing the all the losses discussed
above using outputs of the corresponding DicycleGAN generators and discrimi-
nators.

Fig. 3. Calculation of losses in DicycleGAN. (a) shows GAN and image alignment
losses: the undeformed output of the image generators are used for alignment losses,
and the deformed outputs for GAN losses. (b) shows the Cycle consistency losses.
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3 Experiments

Evaluation Metrics. The most widely used quantitative evaluation metrics
for cross-domain image synthesis are: mean squared error (MSE), peak signal-
to-noise ratio (PSNR) and structural similarity index (SSIM). Given a volume xA

and a target volume xB , the MSE is computed as: 1
N

∑N
1

(
xB − GA→B(xA)

)2,

where N is number of voxels in the volume. PSNR is calculated as: 10 log10
max2

B

MSE .
SSIM is computed as: (2μAμB+c1)(2δAB+c2)

(μ2
A+μ2

B+c1)(δ2
A+δ+B2+c2)

, where μ and δ2 are mean and

variance of a volume, and δAB is the covariance between xA and xB . c1 and c2
are two variables to stabilize the division with weak denominator [13].

Datasets. We use the Information eXtraction from Images (IXI) dataset1 which
provides co-registered multi-sequence skull-stripped MR images collected from
multiple sites. Due to the limited storage space, here we selected 66 proton density
(PD-) and T2-weighted volumes, each volume contains 116 to 130 2D slices. We
use 38 pairs for training and 28 pairs for evaluation of synthesis results. Our image
generators take 2D axial-plane slices of the volumes as inputs. During the train-
ing phase, we resample all volumes to a resolution of 1.8 × 1.8 × 1.8mm3/voxel,
then crop the volumes to 128× 128 pixel images. As the generators in both Cycle-
GAN and DicycleGAN are fully convolutional, the predictions are performed on
full size images. All the images are normalized with their mean and standard devi-
ation. We also used a private dataset contains 40 multi-modality abdominal T2*-
weighted images and CT images collected from 20 patients with abdominal aortic
aneurysm (AAA) in a clinical trial. All images are resampled to a resolution of
1.56 × 1.56 × 5mm3/voxel, and the axial-plane slices trimmed to 192 × 192 pix-
els. It is difficult to non-rigidly register whole abdominal images to calculate the
evaluation metrics, but the aorta can be rigidly aligned to assess the performance
of image synthesis. The anatomy of the aorta have previously been co-registered
and segmented by 4 clinical researchers.

Implementation Details. We used image generators with 9 Resnet blocks.
All parameters of, or inherit from, vanilla CycleGAN are taken from the origi-
nal paper. For the DicycleGAN, we set λcyc = λdicyc = 10 and λalign = 0.9. The
models were trained with Adam optimizer [14] with a fixed learning rate of 0.0002
for the first 100 epochs, followed by 100 epochs with linearly decreasing learning
rate. Here we apply a simple early stop strategy: in the first 100 epochs, when
LDicycleGAN stops decreasing for 10 epochs, the training will move to the learning
rate decaying stage; this tolerance is set to 20 epochs in the second 100 epochs.

Experiments Setup. In order to quantitatively evaluate robustness of our
model to the domain-specific local distortion, we applied an arbitrary non-linear
distortion to the T2-weighted images of IXI. Synthesis experiments were per-
formed between the PD-weighted data and undeformed, as well as the deformed
1 http://brain-development.org/ixi-dataset/.

http://brain-development.org/ixi-dataset/
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T2-weighted data. When using deformed T2-weighted images, the ground truth
were generated by applying the same nonlinear deformation to the source PD-
weighted images. We trained the CycleGAN and DicycleGAN using unpaired,
randomly selected slices. The training images were augmented using aggressive
flips, rotations, shearing and translations so that CycleGAN can be robust. In
the test stage, the three metrics introduced above were computed. For our pri-
vate dataset, the metrics were computed within the segmented aortic anatomy
excluding any other imaged objects because all the three metrics require to be
calculated on aligned images.

4 Results

Tables 1 and 2 present the PD-T2 co-synthesis results using undeformed and
deformed T2-weighted images. In addition, Fig. 4 provides an example showing
the synthesized images generated by CycleGAN and DicycleGAN. CycleGAN
encoded the simulated domain-specific deformation, whether applied to source
or target domain, and combined this deformation into the synthesized images.
This leads to misalignment of source and synthesized images. The quantita-
tive results show that our DicycleGAN model produced comparable results with
CycleGAN when there is no domain-specific distortions, but it achieved remark-
able performance gain when the source and target images can not be aligned
through an affine transformation. This is because of the deformed synthesized
images generated by CycleGAN which lead to severe misalignments between the
source and synthesized images.

The cross-modality synthesis results are shown in Table 3. The discrepancy
between the two imaging modalities can be shown by the different relative posi-
tions between the imaged objects and the beds. CycleGAN encoded this infor-
mation in the image generators as shown earlier in Fig. 1.

Fig. 4. Example of synthesized images generated by CycleGAN and DicycleGAN, com-
pared to the ground truths. The ground truth of the deformed source image is generated
by applying the same arbitrary deformation to the original target image.
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Table 2. Synthesis results of IXI dataset using deformed T2 images.

Experiment Model MSE PSNR SSIM

PD to T2 Cycle 0.586 (0.25) 19.52 (1.62) 0.6081 (0.12)

Dicycle 0.145 (0.02) 22.32 (1.29) 0.7842 (0.03)

T2 to PD Cycle 0.561 (0.22) 19.42 (1.61) 0.6001 (0.11)

Dicycle 0.141 (0.02) 22.86 (1.31) 0.7714 (0.02)

Table 3. Multi-modality synthesis results using private dataset.

Experiment Model MSE PSNR SSIM

T2* to CT Cycle 0.516 (0.19) 18.32 (1.82) 0.5716 (0.15)

Dicycle 0.287 (0.11) 23.71 (1.17) 0.7122 (0.03)

CT to T2* Cycle 0.521 (0.22) 19.12 (1.60) 0.5818 (0.12)

Dicycle 0.299 (0.08) 22.66 (1.11) 0.7556 (0.02)

5 Conclusion and Discussion

We propose a new method for cross-domain medical image synthesis, called Dicy-
cleGAN. Compared to the vanilla CycleGAN method, we integrate DCN layers
into the image generators and reinforce the training process with deformation-
invariant cycle consistency loss and NMI-based alignment loss. Results obtained
from both multi-sequence MR dataset and our private multi-modality abdominal
dataset shows that our model achieved comparable performance with CycleGAN
when the source and target data can be aligned with an affine transformation.
Our model achieved obvious performance gain compared to CycleGAN when
there are domain-specific nonlinear deformations. A possible future application
of DicycleGAN is multi-modal image registration.
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