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Abstract. The simulations in biomedical imaging serve when the real
image data are difficult to be annotated or if they are of limited quan-
tity. An increasing capability of contemporary computers allows to model
and simulate complex shapes and dynamic processes. In this paper, we
introduce a new model that describes the formation process of a complex
tubular network of endothelial cells in 3D. This model adopts the fun-
damentals of cellular Potts model. The generated network of endothe-
lial cells imitates the structure and behavior that can be observed in
real microscopy images. The generated data may serve as a benchmark
dataset for newly designed tracking algorithms. Last but not least, the
observation of both real and synthetic time-lapse sequences may help the
biologists to better understand and model the dynamic processes that
occur in live cells.
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1 Introduction

The image based simulations focused on modeling of virtual cells and their
behavior started to emerge in the early 90s. Before, they represented rather
a theoretical approach which was understood to be an important one but not
practically used. Nowadays, namely due to the increasing computational power,
availability of multi-core processors or GPUs, and the capacity of contemporary
computers, the development of new cell simulation frameworks goes hand in
hand with newly emerging algorithms handling the biomedical image data. The
current simulation frameworks can generate the synthetic image data accom-
panied with absolute ground truth in large quantities. The simulated data are
either static [2,5] or dynamic [1,12].

The static data typically correspond to some images acquired with confocal
or widefield fluorescence microscope. With this acquisition technique, only the
subcellular components, that are under the scope, are fluorescently labeled and
therefore visualized. This fact markedly simplifies the generated model of cell as
there is no need to understand the whole cellular structure. On the other hand,
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the staining procedure, that precedes the acquisition of real images, takes some
time. Moreover, in live cell imaging the staining may influence the behavior
of the observed cells. For this purpose a phase contrast microscopy serves as
an alternative solution and is very popular. This advantage is counterbalanced
by the fact, that the synthetic model has to describe the whole cell structure
and must be defined fully in 3D. The model, that would combine both or even
multiple modalities (bright field microscopy [6], TIRF [8], or SMLM [9]) together,
is a holy grail of simulations.

Even though there have been designed and implemented many simulation
frameworks suitable for generation of time-lapse image sequence [15], most of
them provided rather a schematic and simplified data. In [1], for example, the
objects under the scope were the cells represented simply by touching or over-
lapping spheres without any internal structure. In [12], the authors proposed
a generator of a cell population. The cells were allowed to move and split due
to mitosis. Nevertheless, the interaction between the cells was rather limited. In
agent-based approach, the biologically motivated model is based on the modifica-
tion [7] of standard cellular Potts model (CPM) [4] where the cells are expected
to markedly interact. This approach was further extended [13] and the cells were
allowed to be elongated as chords to resemble the behavior of real endothelial
cells in tubular networks (see Fig. 1). The model was, however, settled in 2D only.
This fact on one hand brings the advantage of high speed computation. On the
other hand, the manipulation with 2D image data is very limiting, namely when
simulating the behavior of phase contrast microscope, where the full 3D image
information is required. In 2012, Scianna and Preziosi [10] designed a straightfor-
ward extension of Merks’ model into 3D. Later on, Svoboda and Kozubek [14]
simplified Sianna’s model and added the final post processing simulating the
fluorescence as well as phase contrast microscope. Nevertheless, none of these
two approaches offered a generation of straight elongated cells that occur in real
images of tubular networks due to tension of the whole network. The tension
forces caused some cells to be either unnaturally deformed or disjoint. In some
particular cases some cells were even torn into pieces.

In this paper, we introduce a modification of previously mentioned CPM-
based models. The newly presented model is defined fully in 3D space, keeps
the already established mutual cell connections and guarantees the presence of
chord-like cells that are exposed to tension forces. The synthetic image data
produced by our approach are presented. A validation of similarity of both real
and synthetic data using the fractal dimension and lacunarity descriptors is also
provided.

2 Method

The proposed model combines the basic principles introduced in [10,14]. Let
us first recall these principles. Afterwards, we emphasize the differences and
introduce the new approach.
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Fig. 1. An example of cell population forming a tubular network: (left) real image
acquired using a phase-contrast microscope; (right) the left image annotated using two
classes – foreground and background. Note, that all the images are volumetric ones. In
order to visualize them we used maximum intensity projection.

2.1 3D Cellular Potts Model

Basic Definitions. Let Ω ⊂ R
3 be a three-dimensional lattice with each grid

site x ∈ Ω labeled with a spin function σ ⊂ Ω × (LABELS × N0 × N0)

σ : x → (label, id, cell). (1)

where the individual elements have the meaning as follows:

– The property label defines the type of biological structure that the cur-
rently inspected grid site belongs to. The following set LABELS= {nucleus,
cytoplasm, mitochondrion, medium, ECM} is used. The first three labels cor-
respond to subcellular components. The last two labels define the non-cellular
objects appearing in the biological specimens. They are usually understood
as a background. Here, ECM stands for extra cellular matrix.

– Inside each cell, there is just one nucleus. Nevertheless, some components
appear twice or even multiple times. In order to distinguish between the indi-
vidual occurrences of such objects a unique identifier id ∈ N0 is introduced.
All the components are surrounded by the cytoplasm which is associated with
one unique id.

– An element cell ∈ N0 is a unique identifier of a cell to which the currently
inspected grid site x belongs.

In order to simplify the notation, let us define the name substitution σbg =
(bgLabel, 0,−), where bgLabel∈{medium, ECM}. The term σbg is therefore a value
of spin function σ in a lattice site x that belongs to medium or ECM.
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Fig. 2. An example of connectivity graph G: (left) shape of graph during the network
evolution, (right) final configuration of the graph. Please note, that both graphs are
defined fully in 3D. For visualization purposes a maximum intensity projection was
used.

Finally, let πi, i ∈ {1, 2, 3} be a projection function that takes an element
x = (x1, x2, x3) of the Cartesian product (X1×X2×X3) to the value πi(x) = xi.
By using this projection, we can get, for example, the label of one particular
grid site x by evaluating the term π1(σ(x)).

The 3D lattice Ω with its sites and spin function σ can be also understood as
a discrete multichannel 3D image with individual voxels and voxel values. The
voxels with similar values form the logical objects that we want to represent
using the lattice Ω. In this case, the objects are the cells and their components.

Connectivity Preservation. In order to control the connectivity of neigh-
boring cells, the graph based approach that tackles with the connectivity of
CPM [13,14] is utilized. Here, a geometrical center of each cell is understood to
be a vertex. The edge between two vertices is established if the corresponding
cells touch using at least one voxel. This way, a non-oriented graph G = (V,E) is
constructed. Let v ∈ V be any vertex in the graph G, then dG(v) is a number of
all edges originating from v. In the very beginning, the graph G is disconnected,
i.e., ∀v ∈ V : dG(v) = 0. During the time, the nearby cells tend to join and the
graph structure changes (see Fig. 2).

System Dynamics. The evolution of CPM is an iterative process that starts
with an random initial distribution of cells rendered in the lattice Ω. One itera-
tion of the CPM suggests to flip the spin function of a randomly selected grid site
xs (source) to a spin function σ(xt) of its randomly selected neighbor xt (target),
and evaluates how this flip would affect the Hamiltonian H of the whole system:

ΔH = ΔHAdhesion + ΔHShape + ΔHChemotaxis. (2)
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The term HAdhesion expresses the desire of individual grid site to either stay in
contact with each other or to stay alone.

HAdhesion =
∑

x∈Ω,x′∈Nx

(
1 − δσ(x),σ(x′)

)
J(π1(σ(x)), π1(σ(x′))) (3)

Here, δx,y is the Kronecker delta, Nx is a set of sites neighboring to x. Finally,
the J ⊂ (LABELS×LABELS)×N is a function that associates the binding penalties
for individual pairs of components and is defined by an enumeration:

J(cytoplasm, ECM) = 30
J(cytoplasm, medium) = 40
J(cytoplasm, cytoplasm) = 10
J(cytoplasm, nucleus) = 40
J(cytoplasm, mitochondrion) = 40

J(medium, ECM) = 0
J(ECM, ECM) = 0
J(medium, medium) = 0
J(other, other) = 10000

The term HShape imposes geometrical constrains. In this case, the cell volume
(number of grid sites per cell) constraint is employed:

HShape = λvolume

∑

L,C

(volL,C − V olL)2 (4)

where λvolume is a weight defining the influence of this term, C is an cell id, L
is a cell component id, volL,C is the current volume of a component L in cell C,
and V olL is an mean expected volume of components with label L.

The term ΔHAdhesion (ΔHShape) expresses the difference between HAdhesion

(HShape) calculated with the new suggested value of σ(xt) and HAdhesion

(HShape) with the original value σ(xs).
Finally, the term ΔHChemotaxis expresses the cell ability to respond to the

chemical stimulus. Each cell detects the concentration of signals (the biological
material which is produced by each cell and which serves as an attractor to other
cells) in its vicinity and tries to occupy the position with the highest positive
gradient of concentration c(·, ·). The term is expressed as:

ΔHChemotaxis = − (
1 − δσ(xs),σbg

)
λchemical [c(xt, t) − c(xs, t)] (5)

where λchemical is a parameter controlling the importance of cell chemotaxis and
c(x, t) is the current (time t) concentration of the signals at the site x. The term
c(xt, t) − c(xs, t) defines the difference in concentrations between the current xs

and the proposed xt sites. The concentration function c(·, ·) is defined by the
following equation (arguments were dropped):

∂c

∂t
= D∇2c + β(x, t)(1 − δσ(x),σbg) − 1

γ
δσ(x),σbg c (6)

where β(x, t) is the secretion rate of the signals released from the cell that
occupies the site x, γ is the half life of signals in the medium, and D is the
diffusion coefficient. The secretion rate β is a decreasing function, i.e., if given
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cell acquires sufficient number of attachments with surrounding cells, it decreases
the production of signals c:

β(x, t) =
{

α · 0.9995(t−t0) if dG(π3(σ(x))) ≥ 2
α otherwise

(7)

Here, α is a initial secretion rate identical for all the cells, and t0 is the time
when the given cell π3(σ(x)) first attached at least two other cells.

The probability of flipping the spin of the lattice site xs to the spin σ(xt) is
then given as:

P (σ(xt) ← σ(xs)) =
{

e−ΔH/T if ΔH > 0,
1 if ΔH ≤ 0.

(8)

where T is a temperature describing the willingness of cells to move.

2.2 The Proposed Modifications

Intra-Cell Compactness. In [7], Merks et al. introduced a method that kept
each cell to be compact. The algorithm took the pixel, which value was proposed
to be changed, and compared it with the values of its neighbors. The check for
the local compactness was based on the inspection of individual neighbors in the
clock-wise manner. Unfortunately, this approach could not be straightforwardly
extended to 3D space. For this purpose, we propose a new method which works
well for 3D and can be extended to any higher dimension. The procedure checks
if the proposed change of the value in the inspected voxel would keep or violate
the compactness of the cell to which this voxel belongs. The procedure is as
follows:

1. Let x ∈ Ω be an inspected voxel belonging to some cell and let Nx be its
3 × 3 × 3 neighborhood.

2. Collect the labels from grid Ω in the neighbourhood Nx, keep their positions,
and create a 3D labeled image K as follows: ∀p ∈ Nx : K(p−x) = π1(σ(p)).

3. Count, how many voxels in K belong to background (medium or ECM) and
store the result as value a.

4. Count, how many different labels are included in K and store the result as
value b.

5. Derive a binary image Kb from K by setting voxels with the same label, as
the central voxel has, to true.

6. Set the central voxel value in Kb to false to simulate the proposed voxel value
change.

7. Find any voxel with value true in Kb and run the flood-fill algorithm starting
from this voxel. The filling value is false.

8. Try to find again any voxel with value true in Kb.
9. If the last search was successful and (a>0 or b≥2)) then mark the proposed

voxel value change in x as undesirable as this change would split the cell into
at least two pieces.
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Tension Forces. The tension and stress inside the network is strongly influ-
enced by the chemotactic term (5). In the following text, we propose a modi-
fication of this term and, afterwards, check how it influences the formation of
network structure in 3D space.

As soon as some cell detects a remarkable drop of signal concentration c
in its vicinity, it starts to starve. We propose this cell to stop using the term
ΔHChemotaxis and also all the cells reachable from this cell through the graph
G change their behavior analogously.

Due to the proposed change, the term ΔHAdhesion becomes more dominant.
Together with the shape term ΔHShape it keeps the volume of each cell at a
given mean value and pushes each cell to have the lowest possible surface. This
constraint applied to two neighboring connected cells, that are pulled from each
other, produces elongated and smoothly thinning connection. This is, however,
not the case of 3D model, where the lowest possible surface requires the cells
to look like ideal spheres, while connections are formed of unnaturally twisted
one voxel wide curves. The difference stems from the fact, that 2D model is a
just a cross section of the 3D model and does not properly describe the real
organization of cells in 3D space. In order to get smoothly thinning and strain
connection between each two connected cells in 3D model, we propose the fol-
lowing modification of each CPM iteration:

1. Take a current graph G and render it into the image of the same size as the
lattice Ω is (see an example in Fig. 2).

2. Compute the 3D Euclidean distance map (EDM) over this image.
3. If a grid site x, that belongs to some cell, is proposed to become a back-

ground grid site (medium or ECM) and the EDM(x) < width, where width is
a minimum acceptable width of the connection between the cells, we reject
this change proposal.

3 Results and Validation

The objective of this paper was to propose a model that describes the structure
of the tubular network and its evolution in the course of time. From the biological
point of view, the most important aspect is the final configuration of the network.
The biologists inspect the structure of the network and the organization of the
cells. For this reason, we focus our interest on the generated images that record
the network in a stable configuration, i.e., when it stops evolving. In Fig. 3, you
can see a sample final network as a rendered volumetric image. As it is difficult to
imagine the exact shape of the network in the perspective projection, we also offer
a maximum intensity projection of this particular network in Fig. 4 (bottom-left
image). In the given figure, you can also inspect other synthetically generated
networks (bottom row) and visually compare them with the real networks (upper
row), that were obtained by manual annotation of real microscopy images.
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parameter value
width 2

λchemical 6000
T 50

λvolume 50
α 0.0025
D 1× 10−13

|Nx| 26
γ 800

Fig. 3. 3D visualization of synthetic tubular network using Paraview software together
with a list of parameters that were used for the creation of this artificial network.

Fig. 4. A collection of images representing the mask of tubular network of endothelial
cells. The first row contains the real images, the second one the synthetic ones. For the
visualization purposes, the maximum intensity projection is utilized.



98 D. Svoboda et al.

In order to validate our model, we decided to employ the standard measures
that describe the complexity of the structures depicted in the analyzed images:
box counting fractal dimension and lacunarity [3,11]. As a tool for computation of
these two measures we employed the ImageJ software1 together with the FracLac
plugin2. Both ImageJ and FracLac are freely available.

Seven representatives from real data were randomly selected for annotation
and used for comparison to seven randomly selected representatives from syn-
thetic data. The analysis of these images was performed using a linear mixed
model. The main objective was to inspect the effect of being a synthetic or real
image on the value of fractal dimension or lacunarity with respect to the random
effects given by 12 different measurements for each of 14 individual images (7 syn-
thetic + 7 real). The estimated effect of synthetic data on fractal dimension was
β = 0.031 (standard error: 0.018), which was not significant (p-value = 0.137,
level of significance α = 0.05). In case of lacunarity the change was β = −0.068
(standard error: 0.096) for synthetic data compared to real data, which was not
significant (p-value = 0.666, level of significance α = 0.05). Thus, there were
no significant differences between the real and synthetic data in terms of fractal
dimension and lacunarity. (The logarithm transformation was used for the values
of fractal dimension prior to the model construction.)

4 Conclusions

In this paper, we proposed a modification of 3D CPM model that is able to
describe the structure and evolution of the tubular network of living endothelial
cells. In order to check the plausibility of computer generated data, we submitted
both real and synthetic images to selected image descriptors and showed a high
level of similarity between both categories.

The proposed model (the implementation is freely available3) and the gen-
erated data can be used for the verification of some biological hypothesis and
subsequently to better understanding of dynamic processes that occur in live
cells. In the future, we also plan to properly simulate the optics of phase contrast
microscope to be able to create real-like looking images resembling the images
acquired from the real microscope. In this sense, we would be able to produce
image datasets suitable for the tasks including image segmentation, tracking or
reconstruction.
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1 https://imagej.net/.
2 https://imagej.nih.gov/ij/plugins/fraclac/fraclac.html.
3 https://cbia.fi.muni.cz/research/simulations/multicomponent-cpm.html.
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