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Abstract. In this project, our goal is to classify different types of liver
tissue on 3D multi-parameter magnetic resonance images in patients with
hepatocellular carcinoma. In these cases, 3D fully annotated segmen-
tation masks from experts are expensive to acquire, thus the dataset
available for training a predictive model is usually small. To achieve the
goal, we designed a novel deep convolutional neural network that incor-
porates auto-context elements directly into a U-net-like architecture. We
used a patch-based strategy with a weighted sampling procedure in order
to train on a sufficient number of samples. Furthermore, we designed a
multi-resolution and multi-phase training framework to reduce the learn-
ing space and to increase the regularization of the model. Our method
was tested on images from 20 patients and yielded promising results, out-
performing standard neural network approaches as well as a benchmark
method for liver tissue classification.
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1 Introduction

Hepatocellular carcinoma (HCC) is one of the most common cancer types and
the leading cause in cancer-related death [4]. Multi-parameter dynamic con-
trast enhanced (DCE) magnetic resonance (MR) images are commonly used as
a diagnostic tool for suspected HCC cases and are important for defining treat-
ment targets and predicting outcomes for a number of therapeutic strategies
including transarterial chemoembolization (TACE) [3]. In this work, we are inter-
ested in classifying liver tissue into clinically relevant types on 3D MR images:
© Springer Nature Switzerland AG 2018

W. Bai et al. (Eds.): Patch-MI 2018, LNCS 11075, pp. 59-66, 2018.
https://doi.org/10.1007/978-3-030-00500-9_7


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00500-9_7&domain=pdf

60 F. Zhang et al.

parenchyma and anomalies that consist of viable tumor tissue and necrosis tis-
sue. Recent developments in the design of deep convolutional neural networks
(CNN) provide ways to construct powerful models that can extract both low and
high level features from images that are usually difficult to formulate with tradi-
tional methods and draw accurate inferences [5]. However, such models typically
need a large amount of expert curated labels. This is particularly expensive in
our case as the training requires 3D fully annotated segmentation masks from
radiologists.

To overcome these challenges, we designed a novel CNN model that incor-
porates contextual information to perform classification in a local patch region.
The input patches were sampled at a fixed size but with different resolutions,
in order to capture information from different scales efficiently. We developed
an auto-context-based multi-level architecture that, when coupled with a multi-
phase training procedure, can effectively learn and predict at different levels.
The learning space needed for the each level of the model was thus reduced,
since it only needed to learn the incremental difference based on the learner in
the previous level.

Several other works have explored the similar idea of combining CNN and
auto-context [6,9]. Here we want to point out the difference. In a popular study
[6], auto-context is applied outside the classifier to refine classification perfor-
mance. Our algorithm, in contrast, applies auto-context within the multi-level
classifier, efficiently integrating contextual information from multi-resolution
patch samples to address the small dataset problem.

The main contributions of this work are threefold: (1) It is the first deep neu-
ral network approach to segment tissue types on multi-parameter MR images in
HCC patients without the need of manually designing image features [7]. While
deep CNNs have been developed for liver tumor segmentation from CT images
[1,2], such approaches have not been applied to MR images. (2) It incorporates a
novel auto-context based CNN model design combined with a multi-phase train-
ing strategy that encourages the model to utilize contextual information from
the previous phase. This hierarchical combination of several predictive units is
shown to out-perform the use of a single U-net model given the available data
pool without overfitting. (3) It creatively addresses the data deficiency prob-
lem by sampling the image at different resolutions under a patch based learning
scheme. These multi-resolution patches effectively integrate image information
from different scales yet maintain a relatively low input dimensionality. Overall,
we see the methodology employed in this work as being generalizable to a num-
ber of other detection and segmentation tasks in biomedical images where full
image annotation is difficult to acquire.

2 Proposed Method

2.1 Data Preprocessing

We adopted a patch-based learning scheme in our study to address the data
deficiency problem, as the model would only need to learn the probability distri-
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Fig. 1. Overall structure. Subfigure (a) illustrates the overall architecture of the model.
2’5 are the patches sampled from the image at resolution k’s, y*)’s are the corre-
sponding output of each unit k. m*)’s are different sizes of Gaussian-shape masks
applied to y(k>’s to emphasize prediction performance at the center of patches. Dashed
lines between z*)’s and the units means connections are optional. Subfigure (b) illus-
trates the sampling patterns at different resolutions: the same window dimension, but
different voxel-to-voxel distance

bution of each voxel at a local patch region. In addition, we designed a weighted
sampling procedure to address the class imbalance problem. On average, anoma-
lies account for only 10% of the total liver tissue. We thus re-balanced the class
by forcing a sampling frequency of 50% parenchyma and 50% anomalies.

We also implemented a novel multi-resolution sampling procedure to incorpo-
rate image information at different scales in each patch. This is useful for detect-
ing and delineating anomalies at different sizes (Fig.1a). This multi-resolution
sampling method has two advantages over simply expanding the patch size with
a fixed resolution. First, the fixed patch size is more convenient to work with
in CNNs. Second, the number of voxels in the input array is greatly reduced to
improve computation efficiency.

To further handle the small dataset problem, we used data augmentation.
Each time a patch was sampled, a 3D random rotation was applied.

2.2 Multi-level Hierarchical Architecture

The architecture we proposed is illustrated in Fig. 1b. The whole model consists
of three basic units. In general, each unit & can be any CNN that outputs a
probability map, but in this study we adopted the U-net architecture due to its
elegant design and powerful performance [5]. The entire model took in image
patches sampled at different resolutions and output predictions at those reso-
lutions. The connection from output y* from each unit to its higher level unit
draws inspiration from the research in auto-context [8].

We used a weighted cross entropy as our loss function to update the weights in
the neural network (Eq. 1), and a weighted dice similarity coefficient to monitor
the training process and to select the best model (Eq. 2).

loss = =3 3" m{a)w(i)p(e. ) log(a(z, 1) (1)
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In Egs. (1) and (2), « is the location inside the patch, 7 is the class, p is the true
probability distribution, taking only values of 0 or 1, g is the predicted proba-
bility distribution, m is a Gaussian shape mask to emphasize the performance
at the center of the patch, w and « are the weights in the loss function and the
metric that are set to accentuate performance on certain classes, and (2, ; is the
segmentation mask for class ¢ based on a probability map h.

2.3 Multi-phase Training Procedure

During the training process, the model was trained in three coarse-to-fine phases.
For example, in the first phase of training, weights in unit 3 were updated, while
weights in unit 2 and 1 were frozen; then in the second phase of training, weights
in unit 2 were updated, while those in unit 3 and 1 were frozen. This multi-phase
training procedure was employed to reduce the risk of overfitting for the whole
model and it was based on our intuition that the output of each unit should
function as a coarse estimation at its resolution. This regularization is helpful in
our case for two reasons: (1) Our image data pool is limited even with random
sampling and rotation-based data augmentation. (2) The ground truth is not
necessarily reliable as manual segmentation in noisy 3D images is prone to errors.
Similar methodology has been reported in several recent works [10].

2.4 Data Postprocessing

During the prediction step, the predicted probability map for the whole image
was assembled together by summing all predicted patches with overlap while
each patch is weighted by a Gaussian mask as specified in Eq. 1, since the model
was trained to emphasize the performance at the center of the patch. Simple
post processing was used to get rid of small anomalies in the predicted masks by
setting the label of those anomalies whose volume were under a certain threshold
to parenchyma.

3 Experiments and Results

3.1 Experiment Setup

The image data we used included 20 sets of multi-parameter 3D MR images,
each of which consisted of one T2 weighted MR image and three T1 weighted
dynamic enhanced contrast images at three different time points during the
surgical intervention: pre-contrast phase (before the contrast injection), arterial
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(e) first phase (f) second phase (g) third phase

Fig. 2. Segmentation demonstration. Red color is the parenchyma, green color is the
viable tumor tissue, blue color is the necrosis. Subfigure 2a shows an expert delineation
of some viable tumor tissue and necrosis. Subfigures 2b to d show the prediction results
from three other methods, namely single-resolution input single-phase training, multi-
resolution input single-phase training, and the benchmark method, manually designed
features with random forest in auto-context, as described in Sect. 3.1. Subfigures 2e to
g show the three-phase coarse-to-fine prediction progression in the proposed method.
Visualization is provided using the software itk-SNAP. (Color figure online)

phase (20s after the injection), and venous phase (70s after the injection). All
four images were mutually registered. Though a full automation that included
liver segmentation was possible under our framework, liver masks were provided
in order to achieve a fair comparison with the benchmark method, and to focus
on the problem of the delineation inside the liver. Each patient’s image intensity
was normalized to roughly between 0 and 1.

Images used in this study are from HCC patients with TACE procedures as
part of a larger clinical study on treatment outcome analysis. In these cases, the
number of anomalies often ranges from 1 to 3, with diameter over 20 mm. During
the TACE procedure, the largest tumors are the most important targets. There-
fore the resolutions were selected as 2mm, 1 mm and 1 mm, with a patch size
of 16-by-16-by-16 voxels, in order to focus on performance on medium and large
size tumors. The 20-patient dataset generated effectively 1700 non-overlapping
patches, though with random sampling and random rotation augmentation, no
patches would be exactly the same.

The first two units of the model were designed to differentiate anomalies
from normal liver tissue, while the last one was designed to identify viable tumor
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tissue inside each detected anomaly. This was done by tuning the class weight
w in the loss function (Eq.1). In phase 1, the w’s for parenchyma, viable tumor
tissue, and necrosis are (1.0, 2.0, 0.3), phase 2 (1.0, 1.5, 0.3), and phase 3 (0.0,
1.0, 2.0). For each unit in the model, we implemented a U-net CNN with ten
layers of 3 x 3 x 3 convolution, ten layers of dropout, and two levels of max-
pooling/upsampling. Five fold cross validation method was used to evaluate the
performance of different models. Hyperparameters, such as learning rate and
class weights in the loss functions, remained the same across all five folds.

3.2 A Combination of Measurements

In our evaluation of the method, we also included a two-step measurement
instead of solely the traditional dice similarity coefficient (DSC). First, we cal-
culated how well the anomalies were detected using F score (Eq. 3).

(1 + (3?) - true positive
(14 32) - true positive + (32 - false positive + false negative

Fg =

We set 3 = 2 to reflect the emphasis on recall rate in a clinical setting. An
anomaly is detected if part of its voxels are covered by some predicted masks.
Second, we measured how good the delineation was by aggregating all regions of
interest (anomalies and viable tumor tissue) together and calculating the DSC.
We provide a toy example to further explain the difference between the detection
metric and the delineation metric in Fig. 3.

(a) (b) (c)

Fig. 3. Examples of difference between detection and delineation. Blue regions stand
for anomalies. Orange regions stand for predictions. Subfigure (a): good delineation
(high DSC), poor detection (low F score). Subfigure (b): medium delineation, good
detection. Subfigure (c): poor delineation, good detection. (Color figure online)

3.3 Results

Figure2 demonstrates an example of the proposed algorithm output. Table 1
summarizes the results in our study. The different rows in the method column
describe whether the model utilized multi-resolution input, or only the resolution
at the lowest level; whether it trained the model with a multi-phase strategy, or
without. The single-resolution input single-phase training method is equivalent
to the traditional U-net method. The benchmark method uses manually designed
image features with random forest and iteratively trained auto-context classifiers
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Table 1. Evaluation of different methods using a set of measurements.

method Delineation: DSC detection:
F score
Anomaly | Viable tumor
mass tissue
Multi-resolution input 0.77 0.63 0.80
Multi-phase training
Multi-resolution input 0.66 0.43 0.83
single-phase training
Single-resolution input 0.68 0.48 0.81
single-phase training
Benchmark method 0.72 0.62 0.79
1
0.8 1 !!I
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D 0.4 I multi res mul phase
£ 1 multi res single phase
0.2 I single res single phase
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Fig. 4. Models’ ability to delineate anomalies vs. their sizes. Small anomalies: < 25 mm
diameter, medium: 25 — 40 mm, large: > 40 mm.

as described in [7]. Figure4 describes how well the different models delineate
anomalies at different sizes.
We make several observations from the results we present here.

1. The proposed method achieved the best overall anomaly and viable tumor
tissue delineation performance, compared to both other CNN-based methods
and the benchmark method.

2. The proposed method was tuned towards and did achieve the best perfor-
mance in delineating medium and large size anomalies which the TACE pro-
cedure was targeting.

3. The proposed method was highly efficient in implementation. The whole
model was trained within 90 min without the need of manually designing
complex image features, while it took 18 hours for the benchmark method to
finish running on a better machine.

4 Conclusion

In this work we presented a deep neural network approach to detect and delin-
eate different types of liver tissue on multi-parameter MR images in patients
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with HCC. The patch-based algorithm was able to achieve a performance level
that was better than the benchmark method without the need of manually
designing different shape and texture features, with an implementation that
was much more efficient. The multi-resolution input, the auto-context design
and the multi-phase training procedure were helpful in improving overall perfor-
mance compared to the traditional U-net architecture. In the future, this method
can be applied to a full delineation of the liver tissue with any number of hier-
archical tissue types, including the liver itself. In addition, this methodology
can be applied to a number of other detection and delineation problems in the
biomedical imaging field.
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