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Abstract. We propose a robust approach to estimate depth maps
designed for stereo camera-based wireless capsule endoscopy. Since there
is no external light source except ones attached to the capsule, we employ
the direct attenuation model to estimate a depth map up to a scale fac-
tor. Afterward, we estimate the scale factor by using sparse feature cor-
respondences. Finally, the estimated depth map is used to guide stereo
matching to recover the detailed structure of the captured scene. We
experimentally verify the proposed method with various images captured
by stereo-type endoscopic capsules in the gastrointestinal tract.

1 Introduction

The wireless capsule endoscope (WCE) is a powerful device to acquire images of
the gastrointestinal (GI) tract for screening, diagnostic, and therapeutic endo-
scopic procedures [1]. Especially, the WCE captures the images of the small
intestine where current wired endoscopic devices cannot reach. In this paper, we
introduce a method to recover the 3D structure from stereo images captured by
a stereo-type WCE, shown in Fig. 1.

To perceive depth from endoscopic images, many researchers have brought
various computer vision techniques such as stereo matching [4], shape-from-
shading (SfS) [2,13], shape-from-focus (SfF) [11], and shape-from-motion
(SfM) [3]. Ciuti et al. [2] adopted the SfS technique because the position of
light sources are known and shading is an important cue in the endoscopic
images. Visentini et al. [13] fused the SfS cue and image feature correspondences
to estimate accurate dense disparity maps. Takeshita et al. [11] introduced an
endoscopic device that estimates depth by using the SfF technique, which uti-
lizes multiple images captured with different focus settings at the same camera
position. Fan et al. [3] established sparse feature correspondences between con-
sequent images, and then, they calculated camera poses and the 3D structure
of the scene by using the SfM technique. They generated 3D meshes through
Delaunay triangulation by using triangulated feature points.

Stereo matching is also a well-known technique to estimate a depth map from
images, which can be divided into active and passive [9] approaches. We refer
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Fig. 1. Stereo-type wireless endoscopic capsule, wireless receiver, and captured images
in the stomach and the small bowel, from the left.

structured light-based stereo matching [10] to the active approach which projects
a visible or IR pattern to the scene to leverage correspondence searching between
the images. However, the active approach is not suitable for wireless endoscopy
mainly because of the limited resources, e.g., battery capacity and the size of
a capsule. Therefore, previous studies [4] focused on minimally invasive surgery
rather than WCE-based GI examination. For the same reason, most commercial
wireless endoscopic capsules typically adopt conventional passive image sensors.

To the best of our knowledge, commercially available WCE products are not
capable of estimating depth information. This is the first attempt to estimate
the geometric structure of the scene inside the GI tract captured by a WCE.
To achieve this goal, we designed a stereo-type WCE as shown in Fig. 1 without
enlarging the diameter of the capsule. This sensor can capture about 0.12 million
images for the entire GI tract as described in Fig. 1 ranging from the stomach to
the large bowel. Having captured stereo images in one hand, we estimate a fully
dense depth map by using the direct attenuation model. Since there is no external
light source except ones attached to the capsule, farther objects look darker than
nearer one in the captured image. Therefore, we consider the attenuation trend of
the light to estimate depth maps assuming that the medium inside the GI tract
is homogeneous. We firstly employ the direct attenuation model to compute
an up-to-scale depth map, and then, solve the scale ambiguity by using sparse
feature correspondences. Afterward, we utilize the rescaled depth map to guide
a popularly used algorithm, i.e., semi-global matching (SGM) [6]. The detailed
description of the proposed method is given in the following section.

2 Proposed Method

2.1 Capsule Specification

Our wireless endoscopic capsule consists of two cameras, four led lights, a wireless
transmitter, and the battery. Two cameras are displaced about 4 mm, the viewing
angle is 170◦, and the resolution of captured images is 320× 320. The capsule
captures three pairs of images per second. In total, it captures more than 115,000
images for eight hours in the GI tract. Four led lights are attached around the
cameras as shown in Fig. 1. The lights are synchronized with the cameras to
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minimize the battery usage. Captured images are transmitted to the receiver
because the capsule does not have an internal storage. The length of the capsule
is 24 mm and the diameter is 11 mm.

Fig. 2. Sample input images and the depth maps computed by Eq. (5). Here, bright
pixels indicates they are farther than dark ones.

2.2 Depth Estimation with the Direct Attenuation Model

Since the captured image has poor visibility, the image for each pixel p can be
modeled as [5]

I(p) = J(p)t(p) + A(1 − t(p)), (1)

where J is the scene radiance, I is the observed intensity, t is the transmis-
sion map, and A is the atmospheric light. Since there is no source of natural
illumination such as sunlight, A can be dropped from Eq. (1). Then, t can be
defined as

t(p) = I(p)/J(p). (2)

The transmission map also can be defined by Bouguer’s exponential law of atten-
uation [8],

t(p) = exp (−β(p)d(p)), (3)

where an attenuation coefficient β(p) is typically represented by sum of absorp-
tion and scattering coefficients, β(p) = βabsortion(p) + βscatter(p). By combining
Eqs. (2) and (3), the depth of a pixel p can be estimated as

d(p) =
ln(J(p)) − ln(I(p))

β(p)
≈ ln(Ī) − ln(I(p))

β
. (4)

To simplify Eq.(4), we approximate two terms J(p) and β(p) by considering
characteristics of the GI tract. First, assuming that the GI tract is filled with a
homogeneous matter such as water, the attenuation coefficient β(p) is approxi-
mated as a constant value for all pixels, β ≈ β(p). Second, we also approximate
the scene radiance as the mean of all pixel values as J(p) ≈ Ī based on the
assumption that most pixels have a similar color in a local GI region. Based on
the second assumption, we easily obtain the depth map up to a scale factor β,

dβ(p) = β d(p) = ln(Ī) − ln(I(p)). (5)
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Here, the depth map dβ(p) indicates a depth map up to scale factor β. In the
following section, we estimate β. Beforehand, we apply a noise removal filter to
smooth dβ(p) by using a well-known bilateral filter [12].

2.3 Resolving the Scale Ambiguity of dβ

To resolve the scale ambiguity of dβ(p), we compute β from by using sparse
feature correspondences. First, we detect and match corner points. Then, we
compute the depth of p, ds(p),

ds(p) =
fB

|pL
x − pR

x | , (6)

where pL
x and pR

x are the positions of matched points from the left and right
images along the x-axis, f is the focal length of the left camera, B is the baseline
between two cameras. Since each corner point has corresponding dβ(p), β can
be computed by

β = dβ(p)/ds(p). (7)

Assuming that β is constant for all pixels, we find an optimal β, β∗, that maxi-
mizes the number of inlier points whose error is smaller than a threshold value, τc.

β∗ = arg max
β∈B

∑
p∈S T (p, β, τc),

T (p, β, τc) =
{

1 if |ds(p) − dβ(p)/β| ≤ τc

0 otherwise. ,
(8)

where B is the set of β values computed from all feature correspondences and
S is the set of correspondences’ positions in the image coordinate. The function
T gives 1, if the discrepancy between ds(p) and rescaled dβ(p) is small, and 0,
otherwise. Therefore, the estimated β∗ minimizes the gap between ds and dβ/β.
We thus rescale dβ(p) and compute its corresponding disparity map as

d̄β(p) =
dβ(p)

β∗ , D̄β(p) =
fB

d̄β(p)
. (9)

We utilize the rescaled disparity map D̄β(p) to leverage stereo matching.

2.4 Robust Stereo Matching Using a Guidance Depth Map

We slightly modify the SGM algorithm [6] to compute the disparity map D(p)
which minimizes the following energy function,

E(d) =
∑

p
(φ(p,D(p)) + ψ(p,D(p)))

+
∑

q∈Np

P1T [|D(p) − D(q)| = 1] +
∑

q∈Np

P2T [|D(p) − D(q)| > 1]. (10)
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In the first term, the function φ(·, ·) is the pixel-wise matching cost, computed by
using Census-based hamming distance and absolute difference of intensities (AD-
CENSUS). The function ψ(·, ·) is also the pixel-wise matching cost computed by
using D̄β(p),

ψ(p,D(p)) =
{ |D̄β(p) − D(p)| if |D̄β(p) − D(p)| ≤ τerr

c otherwise . (11)

The second term gives the penalty P1 for the pixels having small disparity dif-
ferences with the neighboring pixels q∈ Np, i.e., T [|D(p) − D(q)| = 1] gives 1
when the difference of disparity values is 1. Similarly, the third term gives the
large penalty P2 such that P2 > P1 for the pixels having disparity differences
greater than 1 with the neighboring pixels. We minimize Eq. 10 by using the SGM
method [6]. As a post-processing step, we apply the weighted median filter [7].
Finally, we obtain the depth map from the disparity map by d(p) = fB/D(p).

Fig. 3. Comparison of disparity maps and reconstructed 3D structures.
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Fig. 4. Comparison reconstructed 3D structures.

3 Experimental Results

Computing depth maps from endoscopic images is difficult, mainly because of
difficulties caused by the characteristics of the GI tract and the limited resources
of the capsule. The difficulties are summarized as (1) inaccurate matching due
to lens distortion, (2) low resolution image, (3) image noise caused by the lack
of illumination.

Note that the proposed method without the direct attenuation model and
its cost function terms in Eqs. (10) and (11) is identical to the popularly used
stereo matching algorithm, SGM [6]. Therefore, we qualitatively compare results
of the proposed method with the conventional SGM to demonstrate the advan-
tages of the proposed method under the aforementioned difficulties. To achieve
fair comparison and to explicitly demonstrate the advantages of the proposed
method, we used the same similarity measure and parameters for the SGM and
the proposed method.
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In the first experiment, we used the images of a stomach and a small bowel
captured by our stereo-type WCE. In the second experiment, we used the large
bowel Phantom model1 not only to capture endoscopic images but also to com-
pare the actual size of an object with the estimated size.

Qualitative Evaluation: Most importantly, the proposed method acquires
fully dense depth maps whereas the conventional approach fails at non-
overlapping regions because pixels of the left image in non-overlapping regions
do not have corresponding pixels of the right image. Moreover, since we used a
large field of view cameras, the proportion of non-overlapping regions is about
30∼50% depending on the distance of the captured scene from the camera.
Computed disparity values in non-overlapping regions are noisy as shown in
Fig. 3(b) where noisy disparity values are exceptionally brighter than others in
the disparity map although they should show similar disparity as seen in the
scene structure of Fig. 3(a). The noisy disparity values become more conspicu-
ous when they are represented in the 3D space as shown in Fig. 3(d), and those
noisy disparity values seem to float the space so that they obstruct to see the
underlying 3D structure. Differently, the proposed method accurately recovers
the 3D structure of the scene as shown in Fig. 3(e) because the proposed cost
function with the direct attenuation model well suppresses uncertainties caused
by radial distortion and low light noise. In addition, the depth map based on
the direct attenuation model effectively enforces the proposed cost function to
reconstruct the depth in non-overlapping regions as shown in Fig. 3(c).

As discussed in the introduction, the main advantage of the WCE is that it
can capture not only stomach images but also images of small bowel where typical
wired endoscopic devices cannot reach. Similar to the results demonstrated in
Fig. 3, the proposed method reconstruct 3D structures of the local stomach and
small bowel regions more robustly than the SGM as shown in Figs. 4(c) and (d),
and effectively estimates dense depth maps in non-overlapping regions as shown
in Figs. 4(a) and (b).

Application for Diagnosis: We also show an application of the proposed
method for diagnosis. Using estimated depth information, we estimate the size of
an object of interest by clicking two points from the image as shown in Figs. 5(a)
and (c). In this experiment, we used the large bowel Phantom model and two
different types of polyps whose size is known. As shown in Figs. 5, the estimated
size is quite similar to the actual size in which the error was at most 0.5 mm.
This procedure has long relied on the experienced doctor or endoscopist.

Parameter Settings and Running Time: We used 7 × 9 window to com-
pute census-based matching cost computation, and set P1 and P2 to 11 and 19,
respectively. The average running time of the proposed method was about 10ms,
implemented on a modern GPU, GTX Titan Xp.

1 https://www.buyamag.com/digestive system models.php.

https://www.buyamag.com/digestive_system_models.php
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Fig. 5. Size estimation results with a large bowel Phantom model

4 Conclusion

We have proposed a stereo matching algorithm designed for a stereo-type wire-
less capsule endoscopy. We obtained an up-to-scale depth map by using the
direct attenuation model because of the light source around the capsule in the
completely dark environment. Thereafter, we employed the up-to-scale depth
map to guide conventional stereo matching algorithms after resolving the scale
ambiguity. Through the experiments, we observed that the proposed method can
estimate depth maps accurately and robustly in the GI tract.
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