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Abstract. We propose a statistical method to address an important
issue in cryo electron tomography image analysis: reduction of a high
amount of noise and artifacts due to the presence of a missing wedge
(MW) in the spectral domain. The method takes as an input a 3D tomo-
gram derived from limited-angle tomography, and gives as an output a
3D denoised and artifact compensated tomogram. The artifact compen-
sation is achieved by filling up the MW with meaningful information. The
method can be used to enhance visualization or as a pre-processing step
for image analysis, including segmentation and classification. Results are
presented for both synthetic and experimental data.
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1 Introduction

Cryo electron tomography (cryo-ET) is intended to explore the structure of an
entire cell and constitutes a rapidly growing field in biology. The particularity of
cryo-ET is that it is able to produce near to atomic resolution three-dimensional
views of vitrified samples, which allows observing the structure of molecular com-
plexes (e.g. ribosomes) in their physiological environment. This precious insight
in the mechanism of a cell comes with a cost: i/ due to the low dose of elec-
trons used to preserve specimen integrity during image acquisition, the amount
of noise is very high; ii/ due to technical limitations of the microscope, complete
tilting of the sample (180◦) is impossible, resulting into a blind spot. In other
words, projections are not available for a determined angle range, hence the
term “limited angle tomography”. This blind spot is observable in the Fourier
domain, where the missing projections appear as a missing wedge (MW). This
separates the Fourier spectrum into: the sampled region (SR) and the unsampled
regions (MW). The sharp transition between these two regions is responsible for
a Gibbs-like phenomenon: ray- and side-artifacts emanate from high contrast
objects (see Fig. 1), which can hide important structural features in the image.
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Another type of artifact arises from the incomplete angular sampling: objects
appear elongated in the blind spot’s direction (see Fig. 1). This elongation erases
boundaries and makes it difficult to differentiate neighboring features.

Filling up the MW with relevant data can reduce or completely suppress these
artifacts. Experimentally this can partially be done using dual-axis tomography
[4], where the sample is tilted with respect to the second axis. Consequently the
blind spot is smaller and the MW becomes a missing pyramid, which results into
a smaller missing spectrum. In practice dual-axis tomography is technically more
difficult to achieve and requires intensive post-processing in order to correct tilt
and movement bias in the microscope. Another strategy consists in exploiting
the symmetry of the observed structure to fill up the MW [3], but this can
only be applicable to specific structures (e.g. virus). Another technique consists
in combining several images, each containing a different instance of the same
object, but with distinct blind spots. This technique is routinely used in cryo-
ET and is known as sub-tomogram averaging [3], but it relies on the acquisition
of several views of the same object type. Accordingly, edicated tomographic
reconstruction algorithms have also been proposed, to compensate MW artifacts
by using a regularization term [7,10] and exploiting prior information. A simpler
way of handling MW artifacts is described in [6], where a spectral filter is used
to smooth out the transition between the SR and the MW. This filter is thus
able to reduce ray- and side-artifacts, but the object elongation remains.

In this paper, we propose a stochastic method inspired from [2] for restoring
2D images and adapted to 3D in [9], and re-interpret the method to recover the
MW in cryo-ET from a Monte Carlo (MC) sampling perspective. The method
[9] has been shown to successfully recover missing regions in the Fourier domain,
achieving excellent results for several missing region shapes, including the MW
shape. The method [9] works by alternatively adding noise into the missing region
and applying a patch-based denoising algorithm (BM4D). However, the method
has no clear theoretical framework and appears therefore empirical. The authors
interpret their method as a compressed sensing algorithm, which relies on two
conditions: sparsity of the signal in some transform, and the incoherence between
this transform and the sampling matrix. Actually, BM4D does rely on a trans-
form where the signal is sparse. Nevertheless, it is not clearly established that
this transform is incoherent with the sampling matrix, defined by the support
of the SR. Therefore, there is no theoretical proof of convergence, even though
the authors show numerical convergence. Also, the data in [9] is exclusively syn-
thetic and corrupted with white Gaussian noise, for which BM4D has been well
designed. It remains unclear how the method performs with experimental data
and non Gaussian noise.

Consequently, we reformulate the method [9] as a Metropolis-Hastings proce-
dure in the MCMC framework (Sect. 2), and demonstrate that it performs as well
as the original method but converges faster. Moreover, any patch-based denoiser
can be applied [5,8,9] and the concept is more general than [9]. Finally, we pro-
vide evidence that our method enhances signal in experimental cryo electron
tomography images (Sect. 3).
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2 Statistical and Computational Approach

Formally, we denote Y the n-dimensional noisy image, and X ∈ R
n the unknown

image where n = |Ω| is the number of pixels of the volume Ω. We consider the
following observation model:

Y = M(X + η) (1)

where η ∼ N (0, In×nσ2
e) is a white Gaussian noise, In×n is the n-dimensional

identity matrix, and M(.) is an operator setting to zero the Fourier coefficients
belonging to the MW support.

To recover the unknown image, we propose a dedicated Monte-Carlo sampling
procedure that generates at each iteration k a sample X̂k ∈ R

n (see Fig. 2). This
procedure is based on the Metropolis-Hastings algorithm, determined by two
steps: i/ a proposal step, where a n-dimensional candidate image is generated
from a proposal distribution; ii/ an evaluation step, where the candidate is either
accepted or rejected according to the Gibbs energy E(X̂k), defined as the l2 norm
between the candidate X̂k and the observed image Y :

E(X̂k) =‖ M(Y ) − M(X̂k) ‖2 . (2)

In addition, we compute the norm on the SR support only, given that the
MW of Y contains no information.
Formally, the procedure is defined as follows:

1. PROPOSAL STEP:
– Perturbation: we perturb the current X̂k with a n-dimensional white

Gaussian noise with variance σ2
p: X̂ε

k = X̂k + ε, with ε ∼ N (0, In×nσ2
p).

– Projection: we project X̂ε
k on the subspace of images having the same

observed frequencies as Y : Π(X̂ε
k) = FT−1(IS × FT(Y )) + (1 − IS) ×

FT(X̂ε
k)) where FT denotes the Fourier transform, and IS is a binary

mask having values of 1 for Fourier coefficients belonging to the SR and
values of 0 otherwise.

– Denoising: DN(Π(X̂ε
k)) = X̃k.

2. EVALUATION STEP:
Define X̂k+1 as:

X̂k =

⎧
⎨

⎩

X̃k if α ≤ exp
−ΔE(X̃k, X̂k−1)

β
,

X̂k−1 otherwise,
(3)

where α is a random variable: α ∼ U [0, 1] (uniform distribution), β > 0 is a
scaling parameter and ΔE(X̃k, X̂k−1) = E(X̃k) − E(X̂k−1)

Actually, the originality of our approach lies in the way the candidates are
proposed. The objective is to explore a subset S of plausible images, S being
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shaped by our prior knowledge. The perturbation allows to randomly explore
the image space around X̂k, applying the prior guaranties that the exploration
is limited to S. The prior is twofold: i/ the images should have the same SR as
Y , hence the projection operation; ii/ the images should be piece-wise smooth
and self-similar, hence the patch-based denoising.

In the Bayesian framework, we focus on the conditional expectation estima-
tor, computed as the average of N generated samples X̂k:

X̂ = lim
N→∞

1
N − Nb

N∑

k=Nb

X̂k � 1
Z

M∑

λ=1

e−E(Xλ)Xλ (4)

where Z is a normalization constant and M is the cardinal of the space S of
admissible images. It is recommended to introduce a burn-in phase to get a more
satisfying estimator. Hence, the first Nb samples are discarded in the average X̂.

In the end, the method is governed by three parameters: the number of
iterations N , the noise variance σ2

n and the scaling parameter β. At each iteration
k, the patch-based denoising algorithm removes the perturbation noise ε. The
parameter β affects the acceptance rate of the evaluation step. The higher the
value of β, the higher the acceptance rate. For a high enough β value, all proposed
samples are accepted and we fall back on the original method [9]. This method
cannot retrieve unobserved data, but it merely makes the best statistical guess
of what the missing data could be, based on what has been observed.

This iterative procedure is successful provided that the denoising algorithm
is able to remove the perturbation noise. In practice, the perturbation noise
is Gaussian, as most of state-of-the-art denoising algorithm assume additive
white Gaussian noise. This also means that any performant denoising algorithms
including BM4D can be used in this framework [1,5,8]. Depending on the image
contents and modality, some denoising methods could be more adapted than
others, given their particular properties and assumptions.

3 Experimental Results

In this section, we present the results when the denoising is performed by using
BM4D and σe = σn in order to compare to [9]. We considered N = 1000 iter-
ations and a burn-in phase of Kb = 100 iterations. Similar results have been
obtained with the patch-based denoiser NL-Bayes [8].
Data Description. Three data sets (A, B and C) have been used to evaluate
the performance of the method. Dataset A has been simulated, and consists of
a density map of the 20S proteasome, first corrupted by adding varying amount
of noise and then by applying artificially the MW (by giving zero-values to
Fourier coefficients using a wedge shaped mask). Dataset B is an experimental
sub-tomogram containing a gold particle. Dataset C is an experimental sub-
tomogram containing 80S ribosomes attached to a membrane.
Evaluation Procedure. The evaluation differs depending on the dataset. For
dataset A we have at our disposal a ground truth. We can thus use similarity
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measures like the PSNR (peak signal to noise ratio) for evaluation. In dataset
B, we see that the gold particle is elongated (ellipse) due to the MW artefacts.
Improving the sphericity of the object is thus a good evaluation criterion. For
dataset C, we measure the similarity between the central ribosome and a ref-
erence (obtained via sub-tomogram averaging). The evaluation criterion is the
Fourier shell correlation (FSC), commonly used in cryo-ET [11]. In order to mea-
sure the quality of the recovered MW only, we also compute the FSC over the
MW support (“constrained” FSC or cFSC).
Results and Discussion. From the results on dataset A (Fig. 3(a)) it can be
seen how well the method works in the absence of noise (σn = 0): a quasi perfect
image recovery has been achieved, despite the complexity of the object. Increas-
ing the amount of noise deteriorates the performance, but as can be observed for
σn = 0.2 the result is still satisfying. For high amounts of noise (σn = 0.4), the
object contrast is still greatly enhanced but the MW artifacts could not be com-
pletely removed. Let us examine the Fourier domain (Fig. 3(b)): in the absence of
noise, the MW has been filled up completely, whereas for an increasing amount
of noise the MW reconstruction is increasingly restrained to the low frequen-
cies. This is because high frequency components of a signal are more affected by
noise, which makes them more difficult to recover. In Fig. 3(c), the evolution of
the PSNR over time shows that the method converges to a stable solution. In
Fig. 3(d) we compare our method to the original one [9]. Both methods produce
visually identical results in the spatial domain, as well as in the spectral domain,
as can be confirmed by the final achieved PSNR values. However, the difference
lies in convergence speed: our method takes about half as long as the original
method [9]. Even though the synthetic dataset A is a simplified case of data
corruption in cryo-EM, it gives a good intuition of the method performance.

The result on dataset B shows that noise is reduced and a significant part
of the MW could be recovered (see Fig. 1). Even though the recovery is not
complete, it is enough to reduce the MW artifacts while preserving and enhancing
image details. The ray and side artifacts induced by the high contrast of the gold
particle are reduced and its sphericity has been improved, bringing the image
closer to the expected object shape. The result on this dataset shows that the
method is able to handle experimental noise in cryo-ET.

The dataset C contains molecules (ribosomes) that have more interest for
biologists (see Fig. 4). This case is more challenging, because the objects have a
more complex shape and less contrast, i.e. the SNR is lower. Nonetheless, the
method could enhance the contrast and according to the FSC criteria, the signal
has indeed been improved. Although visually it is more difficult to conclude
that the MW artifacts have been affected, the Fourier spectrum shows that
Fourier coefficients could be recovered. With no surprise, the amount of recovered
high frequencies is less than for dataset B, because of the lower SNR. It is now
necessary to provide a proof that the recovered coefficients carry a coherent
signal, therefore the cFSC has been measured. The black curve in Fig. 4 depicts
the cFSC between the unprocessed image and the reference: given that the MW
contains no information, the curve represents noise correlation. Consequently,
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Fig. 1. Experimental sub-tomogram (61 × 61 × 61 voxels) containing a gold particle
(dataset B). The top row shows the input in the spectral and spatial domains, the
bottom row shows the output.

Fig. 2. The method flowchart. The 1st icon row represents the data in the spectral
domain, the 2nd in the spatial domain.

everything above the black curve is signal, which is indeed the case for the
processed data (red curve in Fig. 4). To illustrate how the method can improve
visualization, a simple thresholding has been performed on the data (3D views
in Fig. 4). While it is difficult to distinguish objects in the unprocessed data, the
shape of ribosomes become clearly visible and it can be observed how they are
fixated to the membrane.
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Fig. 3. Simulated data of the 20 S proteasome, for varying amounts of noise (dataset
A). All images depict ortho-slices of 3D volumes. The volume size is 64 × 64 × 64
voxels. For (a) and (b), top row: method inputs, bottom row: method outputs. Results
are shown in the spatial domain (a) and in the spectral domain (b). In (c) can be
observed the ground truth and the evolution of the PSNR over iterations. Finally, in
(d) we compare our method to the orginal method described in [9]

Fig. 4. Experimental sub-tomogram (46 × 46 × 46 voxels) containing ribosomes
attached to a membrane (dataset C). (a) Top row: input image in spectral domain,
spatial domain and 3D view of the thresholded data. Bottom row: the same represen-
tations for the output. (b) FSC and cFSC measures of the method input (in black)
and output (in red). All measures are wrt the same reference. (Color figure online)
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4 Conclusion

We have proposed a Monte-Carlo simulation method to denoise and compensate
MW artifacts in cryo-ET images. Any patch-based denoiser can be used in this
framework and the procedure converges faster than [9]. Our experiments on both
synthetic and experimental data show that even for high amounts of noise, the
method is able to enhance the signal. However, the method needs a reasonable
constrast of the object of interest to perform well, which is not always the case in
cryo-ET. Nevertheless, with improving electron microscopy techniques like direct
electron detection sensors and phase contrast methods, the method will be able
to produce even more impressive results. The effectiveness of the method being
demonstrated for the challenging case of cryo-ET, the method can be applied to
other imaging modalities, especially on images with high SNR values.

References

1. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. Com-
put. Vis. Pattern Recognit. 2, 60–65 (2005)

2. Egiazarian, K., Foi, A., Katkovnic, V.: Compressed sensing image reconstruction
via recursive spatially adaptive filtering. Int. Conf. Image Process. 1, 549–552
(2007)

3. Foerster, F., Hegerl, R.: Structure determination In Situ by averaging of tomo-
grams. Cell. Electron Microsc. 79, 741–767 (2007)

4. Guesdon, A., Blestel, S., Kervrann, C., Chrétien, D.: Single versus dual-axis cryo-
electron tomography of microtubules assembled in vitro: limits and perspectives.
J. Struct. Biol. 181(2), 169–78 (2013)

5. Kervrann, C.: PEWA: patch-based exponentially weighted aggregation for image
denoising. Adv. Neural Inf. Process. Syst. 27, 1–9 (2014)
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