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Abstract. Intensity-based multi-atlas strategies have shown leading
performance in segmenting healthy subjects, but when lesions are
present, the abnormal lesion intensities affect the fusion result. Here, we
propose a reformulated statistical fusion approach for multi-atlas seg-
mentation that is applicable to both healthy and injured brains. This
method avoids the interference of lesion intensities on the segmentation
by incorporating two a priori masks to the Non-Local STAPLE statis-
tical framework. First, we extend the theory to include a lesion mask,
which improves the voxel correspondence between the target and the
atlases. Second, we extend the theory to include a known label mask,
that forces the label decision in case it is beforehand known and enables
seamless integration of manual edits. We evaluate our method with simu-
lated and MS patient images and compare our results with those of other
state-of-the-art multi-atlas strategies: Majority vote, Non-local STAPLE,
Non-local Spatial STAPLE and Joint Label Fusion. Quantitative and
qualitative results demonstrate the improvement in the lesion areas.
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1 Introduction

Brain parcellation has become an essential tool for understanding neurologi-
cal structural-functional associations at a millimeter scale. The resulting vox-
elwise tissue classifications are integral to identifying structural regions for
connectomics, functional activations, quantitative/metabolical changes, diffu-
sion connectivity, etcetera. These techniques require reproducible segmentations;
however, manual delineation is time-consuming, exhibits poor reproducibility,
and is subject to inter- and intra- operator variability. For these reasons, auto-
matic brain parcellation has been widely studied [1–3]. Several automatic strate-
gies have been proposed in the literature to segment brain structures, such
as deformable, learning-based, region-based, etc. [4–6]; however, most of these
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methods are structure-specific and do not allow segmentation of the whole brain.
In contrast, atlas-based strategies provide a whole parcellation when the atlases
used have all the structures labelled.

In multi-atlas segmentation, a collection of atlases is registered to the target
image and their labels are propagated and fused in the target image space,
obtaining the final segmentation. Label fusion strategies based on intensities [7–
10] have been demonstrated to be robust and provide good performance when
dealing with healthy subjects. However, as most other state-of-the-art methods,
they are designed to segment healthy subjects and their performance tends to be
affected when segmenting brains hindered by tumors and lesions, for instance,
as a result of multiple sclerosis (MS) [12].

Herein, we propose a novel statistical fusion algorithm that reformulates the
non-local STAPLE (NLS) [8] statistical framework to handle (anatomical) MRI
visible lesions. As in NLS, our method models the registered atlases as collections
of volumetric patches with intensity and label information. To complement the
non-local criteria, we introduce lesion mask information to resolve the imperfect
correspondences between the healthy atlases and the lesioned target derived
from inaccurate registrations. Additionally, a second mask is integrated into the
estimation process, which forces the voxel label assignation in case it is known
beforehand. For instance, this modification is useful when segmenting brains
with tumors for which sub-regions are known. Together, these innovations enable
inclusion of masks of abnormal anatomy and manually provided edits within
modern statistical fusion approaches. We derive the theoretical basis governing
our method and demonstrate segmentation improvement with respect to other
multi-atlas strategies on the state of the art on both simulated and MS images.

2 Theory

Consider a target gray-level image (with lesions) represented as a vector I ∈
IRN×1. Let T ∈ LN×1 be the latent representation of the true target seg-
mentation, where L = {0, . . . , L − 1} is the set of possible labels which can
be assigned to a concrete voxel. Let M ∈ {0, 1}N×1 be a binary lesion mask
indicating whether a given voxel i of the target image contains or is part of
a lesion and K ∈ {0, 1}N×1 a second mask specifying if for a given voxel i
of the target image, the true label is known, hence Mi = p (Ii ∈ lesion) and
Ki = p

(
Ti = Tk ∈ LN×1

)
. Note that both masks are optional and can be

neglected if all voxels in the mask are set to 0. Consider a set R of registered
healthy atlases with associated gray level images, A ∈ IRN×R, and propagated
label decisions, D ∈ LN×R. Let θ ∈ [0, 1]R×N×L×L be the performance level
parameters of the raters (registered atlases), defined voxel-wise. Each element of
θ, θjis′s, represents the probability that rater j observes label s′ given that the
true label is s at a given voxel i and the corresponding voxel i∗ on the associated
atlas−i.e., θjis′s = p (Di∗j = s′, Aj |Ti = s, Ii,Mi,Ki, θjis′s), where i∗ is the voxel
on atlas j that corresponds to the target voxel i.
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2.1 Non-local Correspondence Model

Non-local STAPLE (NLS) [8] incorporates the concept of patch-based non-local
correspondence based on the image intensities of both the target image I and
the registered atlases A to the STAPLE framework. Although this concept has
proven useful for matching healthy tissues to account for registration accuracy,
we cannot rely on intensity similarities between the target lesion areas and the
healthy atlases to rectify registration errors. Therefore, we assume that voxel
correspondence inside the lesions cannot be further improved based on intensity
and, hence, enforce the non-local weighting (αji′i) between voxel i in the target
image at voxel i′ on the jth atlas as follows:

αji′i =

(
1

Zα
exp

(
−‖℘Mi ◦ (℘ (Ai′j) − ℘ (Ii))‖2

2

2 · σi
2 · ‖℘Mi‖

)
exp

(
− ε2i′i

2 · σd
2

))
· (1 − Mi)

+ δ
(
i′ = i

) · Mi

(1)

where ℘(·) is the set of intensities in the patch neighborhood of a given intensity
location. In this definition, ℘Mi

= ℘(1 − Mi) is the masking term that excludes
lesion voxels from the patch calculation and enforces the same patch neighbor-
hood size/shape in both the atlas and the target, ‖℘Mi

◦ (℘(Ai′j − ℘(Ii))‖22 is
the L2-norm between the atlas patch centered at i′ and the target patch centered
at i, ε2i′i is the Euclidean distance in physical space between i and i′, σi and σd

are the standard deviations of the intensity and distance weights, and Zα is a
partition function that enforces the constraint that

∑
i′∈N (i) αji′i = 1, where

N (i) is the set of voxels in the search neighborhood of a given target voxel.
δ(i′ = i) is the Dirac delta function, and ‖℘Mi

‖ is the number of voxels in the
patch neighborhood.

2.2 The Algorithm

If the exact voxel correspondences between the target and the atlases (non-
local model) were known, the lesion mask, and the target and atlas intensity
relationships could be ignored and the spatial STAPLE [11] definition of θ could
be used.

θjis′s ≡ p (Di∗j = s′, Aj |Ti = s, Ii,Mi,Ki, θjis′s)
= p (Di∗j = s′|Ti = s,Mi,Ki, θjis′s)

(2)

However, this correspondence is not known and we have to learn
it with the model defined in Sect. 2.1. Note that using this model
we can approximate the relationship by taking the expected value of
p (Di∗j = s′, Aj |Ti = s, Ii,Mi,Ki, θjis′s) across the raters. Using an assumption
of conditional independence between the labels, lesion mask and intensity, we
approximate the density function as:

p (Di∗j = s′, Aj |Ti = s, Ii,Mi,Ki, θjis′s) ≈ E [p (Dj , Aj |Ti = s, Ii,Mi,Ki, θjis)]
= E [p (Dj |Ti = s,Mi,Ki, θjis) · p (Aj |Ii,Mi)]

=
∑

i′∈N (i)

p (Di∗j = s′|Ti = s,Mi,Ki, θjis′s) · p (Ai′j |Ii,Mi) =
∑

i′∈N (i)

θjis′s · αji′i

(3)
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E-step. Let W ∈ IRL×N, where W
(t)
si represents the probability that the true

label associated with voxel i is s at iteration t of the algorithm given the provided
information and the performance level parameters.

W
(t)
si ≡ p

(
Ti = s|D,A, I,M,K, θ(t)

)
(4)

Using Bayes’ rule to separate the prior label probability (p (Ti = s)) and
assuming independence among the raters, we can rewrite this equation as follows:

W
(t)
si ≡ (1−Ki)·

(
p(Ti=s)·∏j p

(
Di∗j=s′,Aj |Ti=s,Ii,Mi,Ki,θ

(t)
jis′s

))
+Ki·δ(s′=s)

(1−Ki)·
(∑

n p(Ti=n)·∏j p
(

Di∗j=s′,Aj |Ti=n,Ii,Mi,Ki,θ
(t)
jis′s

))
+Ki·δ(s′=s)

(5)

where δ (s′ = s) is the Dirac delta function (probability that the known label
for voxel i of the truth segmentation is s). Using the non-local correspondence
model and the approximated density function, we obtain:

W
(t)
si ≡ (1−Ki)·

(
p(Ti=s)·∏j

∑
i′∈N(i) θ

(t)
jis′s·αji′i

)
+Ki·δ(s′=s)

(1−Ki)·
(∑

n p(Ti=n)·∏j

∑
i′∈N(i) θ

(t)
jis′s·αji′i

)
+Ki·δ(s′=s)

(6)

M-step. In this step, the calculated W
(t)
si is used to update θ

(t+1)
ji by maximizing

the expectation of the complete data log likelihood. As the complete data log
likelihood is not observable, it is replaced by its conditional expectation given
the observable data D, A, I, M , K using the current estimate θ.

θ
(t+1)
ji = arg max

θji

∑
i′∈Bi

E
[
ln

(
p

(
Dj , Aj |Ti′ , Ii′ , Mi′ , Ki′ , θji|D, A, I, M, K, θ(t)

))]

= arg max
θji

∑
i′∈Bi

∑
s

p
(
Ti′ = s|D, A, I, M, K, θ(t)

)
· ln (p (Dj , Aj |Ti′ , Ii′ , Mi′ , Ki′ , θji))

= arg max
θji

∑
i′∈Bi

∑
s

W
(t)

si′ · ln
(
p

(
Di∗j = s′, Aj |Ti′ , Ii′ , Mi′ , Ki′ , θji

))

= arg max
θji

∑
i′∈Bi

∑
s

W
(t)

si′ · ln

⎛
⎝ ∑

i′′∈N (i′):Di′′j=s′

θjis′s · αji′′i′

⎞
⎠
(7)

As each row of θ must sum one to be a valid probability mass function,
we can maximize the performance level parameters for each element by using a
Lagrange multiplier (λ) to formulate the constrained optimization problem.

0 =
δ

δθjin′n

⎡

⎣
∑

i′∈Bi

∑

s

W
(t)
si′ · ln

⎛

⎝
∑

i′′∈N (i′):Di′′j=s′

θjis′s · αji′′i′

⎞

⎠ + λ
∑

s′
θ
(t+1)
jis′s

⎤

⎦

(8)
By solving this equation, we obtain

θ
(t+1)
jis′s =

∑
i′∈Bi

(∑
i′′∈N (i′):Di′′j=s′ αji′′i′

)
· W

(t)
si′

∑
i′∈Bi

W
(t)
si′

(9)
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2.3 Initialization and Priors

The voxel-wise prior p (Ti = s) was initialized using the weak log-odds majority
vote, as in NLSS. The performance parameters, θjis′s, were initialized assuming
each atlas has high performance as: 1, if s = s′; 0.95, if s = s′; 0, if s �= s′; and
0.05
L−1 , otherwise. The search neighborhood N (·) was set to 7 × 7 × 7, patch ℘(·)
dimensions to 5 × 5 × 5 and σi and σd were set to 0.25 and 1.5, respectively.
Algorithm convergence was detected when the average change in the diagonal
elements of θ was below 10−4.

3 Experiments and Results

The atlases used in our experiments were taken from the MICCAI 2012 Grand
Challenge and Workshop on Multi-Atlas Labeling database [13]. This database
consists of 35 T1-w MR images, obtained from the OASIS1 project and labeled
by Neuromorphometrics, Inc.2, and includes labels for the whole brain. PCA
atlas selection was performed and only the 15 most similar atlases were used for
segmentation. All images were histogram normalized and N4 bias field corrected
before registration. All pair-wise registrations were performed using an initial
affine registration (niftyreg3) followed by a non-rigid (ANTs4) procedure. In all
the registrations performed, the lesions were masked-out to avoid their intensities
to interfere in the similarity metric calculation.

As benchmarks, we compare the proposed algorithm to majority vote (MV)
[14], non-local STAPLE (NLS) [8], non-local Spatial STAPLE (NLSS) [9] and
Joint Label Fusion (JLF) [10]. For a fair comparison, all the parameters that
NLS and NLSS share with our algorithm were set to the same values. Also, JLF
was executed with the same patch and neighborhood size.

3.1 Simulated Lesions

Evaluating the performance of segmentation algorithms on real lesioned images
is not an easy task since there is a lack of public databases with ground truth for
both lesions and structures. For this reason, in the first experiment, we simulated
two sets of artificially lesioned images: (1) 10 with uniform intensity lesions, to
test the proposed theory and, (2) 15 with lesion shapes, intensities and locations
obtained from an in-house MS patient database, to simulate realistic cases. All
the lesions were generated on random subjects from the MICCAI 2012 database.
The lesion load of the generated images ranged from [33.49−119.74] mm3 in the
first cohort and from [3.16−26.96] mm3 in the second one.

1 http://www.oasis-brains.org/.
2 http://neuromorphometrics.com/.
3 http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg.
4 https://sourceforge.net/projects/advants/.

http://www.oasis-brains.org/
http://neuromorphometrics.com/
http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg
https://sourceforge.net/projects/advants/
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We evaluated the segmentation results quantitatively using a global Dice
Similarity Coefficient (DSC) across all the structures as the main measure. As
the lesion intensities not only necessarily affect the lesion area segmentation
itself, but also the surrounding tissues, two measures were calculated: (1) DSC
inside the lesion mask, and (2) DSC inside a mask that included three voxels of
the contour. Note that N (·) was set to 7 × 7 × 7.

Figure 1(A) shows that, inside the lesion mask, our method performed sig-
nificantly better than all the intensity-based strategies (JLF, NLS and NLSS)
in both cohorts. However, the performance was similar to that of MV. This
is due to the fact that we cannot trust the intensities inside the lesions, and
we can only rely on an accurate registration (same as MV does). On the other
hand, when the performance was analyzed around the lesion areas, our proposal
was the one that provided the best results (similar to MV in the first cohort
and to JLF in the second one). This behavior is depicted in Fig. 1(B), where
JLF (b and h) misclassifies several structures inside the lesion areas, whereas
in NLSS (c and i) the segmentation is being also affected in the surrounding
structures.

For the evaluation of the manual edits (K mask integration), we segmented
the first dataset again, this time feeding the algorithm with the same lesion
mask for both M and K. The results showed, as expected, a DSC of 1 inside
the lesion areas (M/K mask), whereas the mean DSC around the lesions was
0.7901 ± 0.0463, very similar to that of the first execution (0.7919 ± 0.0457),
conserving a similar effect on the tissues surrounding the lesions.

3.2 MSSeg 2016 Challenge

For the second experiment, we qualitatively compared the fusion results obtained
by the analyzed algorithms on a MS patient database (MSSeg 2016 challenge5).

Figure 2 shows the segmentations obtained with all the analyzed multi-atlas
strategies. As we can observe from Fig. 2(a), MS lesions are hypo-intense in T1-
w modality, which makes its intensity profile similar of that of the gray matter
(GM) and even sometimes similar to the cerebro-spinal fluid (CSF) which may
affect the results of intensity-based algorithms. The lesions shown in Fig. 2(b),
should be classified as white matter, however, the intensity-based algorithms of
the state of the art, Fig. 2(f−h), tend to misclassify those regions as GM or CSF,
whereas our method, Fig. 2(c), shows better classification results in those areas.
When our method is fed with a K mask, Fig. 2(d), the lesion surrounding voxels
remain practically the same as when the K mask is not used, Fig. 2(c), whereas
the segmentation result inside the lesions agrees entirely with the labels imposed
by this mask, as seen in Sect. 3.1.

5 https://portal.fli-iam.irisa.fr/msseg-challenge/overview.

https://portal.fli-iam.irisa.fr/msseg-challenge/overview
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Fig. 1. (A) Global DSC and (B) qualitative segmentation results of analyzed multi-
atlas strategies on both simulated databases: (a−d) uniform intensity lesions, and (e−j)
MS simulated lesions.
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Fig. 2. Segmentation results of the analyzed multi-atlas strategies for the image
01038PAGU of the MICCAI2016 Challenge database.

4 Discussion

Accurate structural volume measurements are important in MS, since the atro-
phy of some structures such as the deep GM is relevant to the disease progression.
However, we have shown that multi-atlas strategies based on intensities, which
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achieve good segmentation results on healthy subjects, are affected by lesions,
and therefore corrupting real measures.

Herein, we have presented the theory to modify the non-local STAPLE frame-
work to deal with MRI visible lesions. The experiments performed show that
our proposal outperforms the state-of-the-art multi-atlas strategies in the lesion
areas for both simulated and MS patient images.

Over-performance of MV compared to the state-of-the-art intensity-based
strategies was observed on the experiments performed on the uniform intensity
lesions database around the lesion areas. This behavior could be due to the
fact that the other strategies are patch-based. These strategies consider mean
patch differences to calculate the correspondences, hence the bright voxels of the
lesions could bias the mean intensity, finding wrong atlas correspondences. Even
though, this is an extreme case to test the proposed theory, it shows, combined
with the over-performance of MV inside the lesion areas, the effect of the lesion
intensities on the segmentation.

In this work, we have only focused on the segmentation performance of the
lesion areas, since those are the ones concerning the proposed reformulation.
Nonetheless, as these areas are better segmented with our strategy, the aver-
age whole brain segmentation performance slightly increases compared to the
non-local STAPLE variants. This small improvement is due to lesions are small
compared to the whole brain volume. For this reason, we believe that extending
our theory to other methods of the literature, such as JLF, would be beneficial
in terms of segmentation accuracy of the lesion areas but also of the whole brain.
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