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Abstract. In this paper, we present a new tool for white matter lesion seg-
mentation called lesionBrain. Our method is based on a 3-stage strategy
including multimodal patch-based segmentation, patch-based regularization of
probability map and patch-based error correction using an ensemble of shallow
neural networks. Its robustness and accuracy have been evaluated on the
MSSEG challenge 2016 datasets. During our validation, the performance
obtained by lesionBrain was competitive compared to recent deep learning
methods. Moreover, lesionBrain proposes automatic lesion categorization
according to location. Finally, complementary information on gray matter
atrophy is included in the generated report. LesionBrain follows a software as a
service model in full open access.
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1 Introduction

The presence of white matter lesions (WML) is associated with different brain diseases
such as multiple sclerosis (MS), small vessel disease or head injury among others, but it
also occurs in normal aging. Magnetic resonance imaging (MRI), especially FLAIR
images, has been found to be very sensitive in the detection of these WML. Therefore,
MRI is the reference standard to identify WML and it plays a crucial role in the
diagnosis and the monitoring of many neurological pathologies. Despite the importance
of quantifying WML, this task remains mainly based on manual counting of lesions or
semi quantitative scores such as Fazekas score. Manual delineation for volumetric
analyses is extremely time-consuming and prone to errors due to inter- and intra-rater
variability. As a result, the automation of WML segmentation has received a great deal
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of attention during the last decade and a wide range of methods have been proposed
[1]. These methods are usually classified into two categories, unsupervised and
supervised. Unsupervised methods do not require a training dataset with manual seg-
mentation of the lesions. These methods estimate lesions mainly using MRI intensities
and some anatomical knowledge. They can be based on Bayesian models, Graph-cut
[2] or thresholding approaches [3] among others. Supervised methods require a training
dataset including manual segmentations of experts to learn from examples. Many
different techniques have been proposed such as Random Forest [4], Patch-based
methods [5, 6] and more recently deep learning methods [7–9]. Although automatic
methods are becoming more and more accurate, manual segmentation remains used
especially in clinical research or clinical trials in which very accurate quantification is
needed to use lesion load as judgement criteria. Several factors can explain the diffi-
culty to apply automatic methods in clinical context.

First, validating the accuracy of WML segmentation methods is challenging
because of the difficulty to define a ground truth. Indeed, the high intra and inter-rater
variability makes difficult to define a gold standard. Moreover, the lack of freely
available annotated datasets leads to highly heterogeneous validation in the literature
making methods comparison arduous. Therefore, it is difficult to appreciate the
respective performances of automatic methods and their potential under clinical con-
ditions. Recently, important efforts have been done to limit these aspects by sharing
freely available datasets based on the consensus of several experts [10]. As a result,
evaluation and comparison of methods become easier and more reliable. In this paper,
we propose a new tool called lesionBrain which is an extension of the rotationally-
invariant nonlocal means (RI-NLM) segmentation method [5]. To evaluate its per-
formance compared to state-of-the-art methods, the validation is carried out on the
MSSEG MICCAI Challenge 2016 dataset which is freely available providing a high
quality ground truth based on the consensus of seven experts.

Second, few methods are freely available making their use in clinic research dif-
ficult. When available, these methods are usually distributed as packages that need to
be downloaded, installed and configured. Installation steps can be complicated and thus
may require experimented persons not always available in a research laboratory and
especially in clinical context. In addition, users have to be trained to use the software
and computational resources have to be allocated to run it. These requirements can
make the use of these packages complex, especially the most recent and sophisticated
ones requiring advanced hardware configuration (e.g., advanced GPU). To address this
issue, lesionBrain is proposed as an online open access solution following the model of
Software as a Service (SaaS). Our method works remotely through a web-interface and
does not require any installation, resources or human interaction.

In addition, automatic methods generally provide the volume of WML as the sole
output. However, complementary information can be relevant from a clinical point of
view. Indeed, the location of lesions is useful to establish a diagnosis of multiple
sclerosis after a first clinical episode according to the McDonald diagnosis criteria for
MS [11]. To provide this information, lesionBrain proposes a lesion classification
based on their proximity to lateral ventricles, cerebral cortex or cerebellum and brain
stem. As a result, the lesion load in volume and also the number of lesions are provided
for periventricular, juxtacortical, infratentorial and deep white matter areas.
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Finally, most of the existing tools provide information focused on WML. However,
complementary information from other structures might be needed to better study brain
pathologies globally. For instance, gray matter (GM) atrophy can provide relevant
information to investigate the neurodegenerative impact of MS or Alzheimer’s Disease
(AD). Therefore, lesionBrain not only provides volumetric measurement on WML but
also a quantification of WM, GM and Cerebrospinal fluid (CSF). When age and gender
of the subject are available, the volumes of these brain tissues are compared to refer-
ence values derived from lifespan models to detect abnormalities [12].

2 Materials and Methods

2.1 Datasets

LesionBrain Dataset: Our training dataset is composed of 43 patients who underwent
3T 3D-T1w MPRAGE and 3D-Fluid-Attenuated Inversion Recovery (FLAIR) MRI.
The preprocessing steps described in the next subsection have been applied to all the
images to align them into the MNI space and to normalize their intensities. Afterwards,
a first expert performed manual segmentations in the MNI space for all the patients
with ITKsnap [13] using T1w and FLAIR images. Then, a second expert validated
and/or corrected all the manual segmentations. At the end, all the images were flipped
as done in [14] to double the size of our training library (i.e., 86 training images).

MSSEG MICCAI Challenge 2016 Dataset: To evaluate our tools, we used the
dataset of the MSSEG MICCAI Challenge 2016 [10]. For this dataset, 15 patients
underwent 3D-T1w MPRAGE, 3D-FLAIR, Gadolinium- enhanced T1w, Proton
Density (PD), and T2w MRI. Only T1w and FLAIR MRI were used during our
experiments. These 15 subjects consist in 3 groups of five subjects scanned with Philips
Ingenia 3T, Siemens Aera 1.5T and Siemens Verio 3T. All the images have been
manually delineated by seven experts. Finally, the experts’ consensus is used as gold
standard.

2.2 Pipeline Description

Preprocessing: First, the images are preprocessed to normalize their intensity and to
register them into the MNI space. A denoising step based on the adaptive nonlocal
means filter is first applied to T1w and FLAIR images [15]. Both denoised MRI are
then coarsely corrected for inhomogeneity [16]. Afterwards, the T1w is registered into
the MNI space using an affine transform [17]. FLAIR is then registered to T1w in the
MNI space. A fine inhomogeneity correction is performed on both images [18]. Finally,
brain tissue maps (i.e., WM, GM and CSF) are obtained using [19]. These tissue maps
are used to perform intensity normalization based on a piece-wise linear scaling of
intensity where the median intensity of each tissue is set to a fixed value [20].
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Structure Segmentation: The T1w is used to segment several anatomical structures.
First, the intracranial cavity (ICC) is extracted using [21] and brainstem and cerebellum
using [22]. Finally, lateral ventricles are segmented using [23].

Candidate Map: To reduce computational time, the segmentation is performed only
on areas which potentially contain lesions as defined below. As done in [4, 6], the mean
l and the standard deviation r of the GM FLAIR intensities are used to estimate a
threshold (th ¼ lþ ar, with a ¼ 0:5). All voxels above this threshold and within the
ICC mask are considered as lesion candidates. However, FLAIR intensity within lesion
may sometimes be below this threshold. Therefore, an atlas of lesions (average of all
the manual lesion maps of the lesionBrain dataset in the MNI space) is also used to
look for lesions at the most probable location. Voxels at locations with probability
higher than 20% to contain a lesion are added to the map of candidates obtained by
thresholding.

Lesions Segmentation: Lesions are segmented using an extension of the RI-NLM
method proposed in [5]. On the one hand, such voxel-wise method may produce false
positive detections especially in cortical areas while implicit regularization of
multipoint/patch-wise frameworks demonstrated better performance than voxel-wise
approaches [20]. On the other hand, using patch-wise methods for lesion segmentation
does not enable to efficiently capture heterogeneity of shape, size and location of
lesions [5]. Therefore, in lesionBrain, we propose to apply first the RI-NLM method on
T1w and FLAIR images to obtain the probability map of lesions. Second, we achieve a
regularization of the probability map using a patch-wise NLM denoising filter [24]. The
weights of the NLM filter are estimated on the FLAIR and then used to average the
probabilities. The RI-NLM takes advantage of inter-subject similarity while patch-wise
NLM regularization (NLMr) takes advantage of intra-subject similarity. Finally, a
systematic error correction step is performed to obtain the final segmentation. Auto-
matic correction of systematic errors was first proposed in [25] with SegAdapter. In
lesionBrain, we used the Patch-based Ensemble Corrector (PEC) proposed in [26].
Contrary to SegAdapter which is based on a voxel-wise Adaboost classifier, PEC
involves patch-wise ensemble of multilayer perceptron classifiers. Recently, second-
pass strategy such as cascade of Convolutional Neural Networks (CNN) [9] demon-
strated high performance to limit false positive detection.

Lesions Classification: Once the lesions are segmented, a last step is performed to
classify them into the following categories: periventricular, juxtacortical, deep white
and infratentorial. Such classification might be clinically relevant since some diagnose
criteria of MS are based on it [11]. Therefore, all the lesions located within 3 voxels
(i.e., 3 mm in the MNI space) from the lateral ventricles, the GM map, and the union of
brainstem and cerebellum are classified respectively as periventricular, juxtacortical
and infratentorial. The remaining lesions located in WM map are classified as deep
white.

Report Generation: At the end, a pdf report is automatically generated providing the
lesion load, the number of lesions for each class and screenshots of the processed
images. Moreover, in case the gender and the age of the patient are provided, the
estimated volumes of WM, GM and CSF are compared to expected normal values
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based on lifespan models [12]. The proposed lesionBrain tool has been integrated into
the volBrain1 platform in full open access [20].

2.3 Validation Framework

First, the method parameters were validated using training lesionBrain dataset through
a K-fold cross validation. For RI-NLM segmentation and NLMr of the probability map,
the patch size was set to 3 � 3 � 3 voxels as proposed in the original papers [5, 24].
The search area was set to 9 � 9 � 9 voxels for RI-NLM and NLMr although
11 � 11 � 11voxels is suggested in [5, 24]. This enables to reduce computational time
with marginal accuracy loss. The number of used training images was set to the
maximum (i.e., 86 when testing on the MSSEG Challenge 2016 dataset). For PEC we
used the default parameters [26]. Therefore, the number of networks was set to 10 and
the two patch scales to 3 � 3 � 3 voxels and 7 � 7 � 7 voxels. During the validation,
we first evaluate the improvement in terms of mean DICE coefficient provided by each
component of the proposed segmentation pipeline – RI-NLM, RI-NLM + NLMr and
RI-NLM + NLMr + PEC (i.e., lesionBrain). Then, lesionBrain is compared with six
state-of-the-art methods. To this end, we used the mean DICE coefficient published by
authors who have evaluated their method on the 15 MS patients of the training MSSEG
Challenge 2016 dataset as we did here. First, lesionBrain is compared with two
unsupervised methods based on graph-cut [2] and thresholding as implemented in LST-
LPA [3]. In addition, the proposed method is compared with four supervised methods
including Random Forest [4] and recent advanced DL methods such as U-Net [7],
Nabla-Net [8] and Dense-Net [7]. Finally, the inter-expert variability estimated in [4]
between the seven experts is provided for reference purposes.

3 Results

First, Table 1 presents the mean DICE coefficient obtained with RI-NLM, RI-
NLM + NLMr and lesionBrain of the MSSEG Challenge 2016 dataset. These results
show that each component of the pipeline improved the segmentation accuracy. The
mean DICE increased from 66.59% to 69.27% with the NLMr of the probability map
and from 69.27% to 72.49% with PEC. Both improvements were found to be signif-
icant when tested with a paired t-test. This demonstrates the advantage of combining
methods based on inter-subject similarity, intra-subject self-similarity and correction of
systematic errors. Table 1 also shows the comparison of lesionBrain with six state-of-
the-art methods. First, lesionBrain obtained the best mean DICE coefficient with 72.49
followed by the Dense-Net proposed in [24] which obtained 70.30. It has to be noted
that lesionBrain only requires 2 contrasts while Dense-Net uses 5 contrasts. Increasing
the number of sequences has a negative impact on the acquisition time, the patient’s
comfort and the related costs. In addition, the Dense-Net has been trained using cross-
validation which can introduce overfitting and thus overestimates the performance of

1 http://volbrain.upv.es
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Table 1. Methods comparison on the 15 MS patients of the MSSEG challenge 2016 dataset in
term of mean DICE coefficient.

Methods Mean DICE in % Training Modalities

Inter-expert
variability [4]

63.02

lesionBrain 72.49 External T1w and FLAIR
Dense-Net [7] 70.30 Cross-

validation
T1, T1Gd, T2, PD and
FLAIR

RI-NLM [5]
+ NLMr

69.27 External T1w and FLAIR

Nabla-Net [8] 67.00 External FLAIR
RI-NLM [5] 66.59 External T1w and FLAIR
Random Forest [4] 63.80 Cross-

validation
T1w and FLAIR

LST-LPA [3] 61.00 Unsupervised FLAIR
Graph-cut [2] 57.09 Unsupervised T1, T2 and FLAIR
U-Net [7] 56.42 Cross-

validation
T1, T1Gd, T2, PD and
FLAIR

Best DICE=89.35% Median DICE=74.14% Worst DICE=46.47%

Fig. 1. Examples of WML segmentation produced by lesionBrain for best, median and worst
DICE obtained on the MSSEG Challenge 2016 dataset. True positives are in green, False
Negatives in red and False Positives in blue. (Color figure online)
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the method. The Nabla-Net proposed in [8] requires only one contrast and has been
trained on external dataset. This method obtained a DICE of 67% which is similar to
the accuracy obtained by RI-NLM with 2 contrasts, but less than the accuracy obtained
with RI-NLM + NLMr or lesionBrain.

Compared to Random Forest [4] which obtained 63.80% of accuracy, RI-NLM, RI-
NLM + NLMr and lesionBrain obtained higher accuracy while they require the same
contrasts. All these methods obtained accuracy higher than inter-expert variability
estimated at 63.02% contrary to the 3 remaining ones. The two unsupervised methods
based on graph-cut [3] and LST-LPA [3] obtained a mean DICE of 57.09% and 61%
respectively. Finally, the U-Net method proposed in [7] obtained the worst accuracy
with 56.42%. These results indicate that supervised methods are ranked among the
best, better than inter-expert variability, while unsupervised methods failed to reach
inter-expert variability. However, the use of CNN does not necessarily ensure a good
accuracy since the worst method is based on a U-Net using 5 contrasts. Finally, Fig. 1
shows examples of WML segmentation obtained by lesionBrain for three patients of
the MSSEG Challenge 2016 dataset (for best, median and worst DICE).

4 Conclusion

In this paper, we present a new tool for WML segmentation using T1w and
FLAIR MRI. Our method combined several complementary patch-based approaches to
accurately segment WML. We evaluated its accuracy on the MSSEG challenge 2016
datasets with a strong ground truth based on the consensus of seven experts. During our
validation, the performance obtained by lesionBrain were competitive compared to
Dense-Net [7], Nabla-Net [8] and U-Net [7]. Moreover, lesionBrain obtained a higher
accuracy than the inter-expert variability. Finally, our tool is already integrated into a
web-platform in open access.
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