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Abstract. A cyclic proof system gives us another way of representing
inductive and coinductive definitions and efficient proof search. Podelski-
Rybalchenko termination theorem is important for program termina-
tion analysis. This paper first shows that Heyting arithmetic HA proves
Kleene-Brouwer theorem for induction and Podelski-Rybalchenko the-
orem for induction. Then by using this theorem this paper proves the
equivalence between the provability of the intuitionistic cyclic proof sys-
tem and that of the intuitionistic system of Martin-Lof’s inductive defi-
nitions when both systems contain HA.

1 Introduction

This paper studies two subjects: intuitionistic Podelski-Rybalchenko theorem for
induction, and equivalence between intuitionistic system of Martin-Löf’s induc-
tive definitions and an intuitionistic cyclic proof system.

Podelski-Rybalchenko theorem [18] states that if a transition invariant is a
finite union of well-founded relations then the transition invariant is also well-
founded. This gives us good sufficient conditions for analysis of program termi-
nation [18]. Intuitionistic provability of this theorem is also interesting; if we can
show this theorem is provable in some intuitionistic logical system, the theorem
also gives us not only termination but also an upper bound of computation steps
of a given program. For this purpose, we have to replace well-foundedness in the
theorem by induction principle, since well-foundedness is a property of negation
of existence and induction principle can show a property of existence. We say
Podelski-Rybalchenko theorem for induction when we replace well-foundedness
by induction principle in Podelski-Rybalchenko theorem. [3] shows Podelski-
Rybalchenko theorem for induction is provable in intuitionistic second-order
logic. [5] shows that this theorem for induction is provable in Peano arithmetic,
by using the fact that Peano arithmetic can formalize Ramsey theorem. However
until now it was not known whether Podelski-Rybalchenko theorem for induc-
tion is provable in some intuitionistic first-order logic. This paper will show this
theorem for induction is provable in Heyting arithmetic and answer this question.
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An inductive/coinductive definition is a way to define a predicate by an
expression which may contain the predicate itself. The predicate is interpreted
by the least/greatest fixed point of the defining equation. Inductive/coinductive
definitions are important in computer science, since they can define useful recur-
sive data structures such as lists, trees, and streams, and useful notions such
as bisimulations. Inductive definitions are important also in mathematical logic,
since they increase the proof theoretic strength. Martin-Löf’s system of induc-
tive definitions given in [16] is one of the most popular systems of inductive
definitions. This system has production rules for an inductive predicate, and the
production rule determines the introduction rules and the elimination rules for
the predicate.

[8,11] proposed an alternative formalization of inductive definitions, called
a cyclic proof system. A proof, called a cyclic proof, is defined by proof search,
going upwardly in a proof figure. If we encounter the same sequent (called a
bud) as some sequent we already passed (called a companion) we can stop. The
induction rule is replaced by a case rule, for this purpose. The soundness is
guaranteed by some additional condition, called a global trace condition, which
can show the case rule decreases some measure of a bud from that of the com-
panion. In general, for proof search, a cyclic proof system can find an induction
formula in a more efficient way than Martin-Löf’s system, since a cyclic proof
system does not have to choose fixed induction formulas in advance. A cyclic
proof system enables us to get efficient implementation of theorem provers with
inductive definitions [7,9,10,12]. A cyclic proof system can also give us another
logical system for coinductive predicates, since a coinductive predicate is a dual
of an inductive predicate, and sequent calculus is symmetric for this dual.

[8,11] investigated Martin-Löf’s system LKID of inductive definitions in
classical logic for the first-order language, and the cyclic proof system CLKIDω

for the same language, showed the provability of CLKIDω includes that of
LKID, and conjectured the equivalence.

As the second subject, this paper studies the equivalence for intuitionistic
logic, namely, the provability of the intuitionistic cyclic proof system, called
CLJIDω, is the same as that of the intuitionistic system of Martin-Lof’s induc-
tive definitions, called LJID. This question is theoretically interesting, and
answers will potentially give new techniques of theorem proving by cyclic proofs
to type theories with inductive/coinductive types and program extraction by
constructive proofs.

This paper first points out that the countermodel of [4] also shows the equiv-
alence is false in general. Then this paper shows the equivalence is true under
arithmetic, namely, the provability of CLJIDω is the same as that of LJID,
when both systems contain Heyting arithmetic HA.

There are not papers that study the equivalence for intuitionistic logic or
Kleene-Brouwer theorem for induction in intuitionistic first-order logic. For
Podelski-Rybalchenko theorem for induction, [3] intuitionistically showed it but
the paper used second-order logic.
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Section 2 proves Kleene-Brouwer theorem for induction and Podelski-
Rybalchenko theorem for induction. Section 3 defines LJID and CLJIDω and
discuss a cyclic proof system for streams. Section 4 discusses the countermodel,
defines CLJIDω + HA and LJID + HA, states the equivalence theorem, and
explains ideas of the equivalence proof. Section 5 discusses proof transforma-
tion and proves the equivalence theorem. Section 6 discusses related work. We
conclude in Sect. 7.

2 HA-Provable Podelski-Rybalchenko Theorem
for Induction

This section will prove Podelski-Rybalchenko theorem for induction, inside Heyt-
ing arithmetic HA. First we will prove Kleene-Brouwer theorem for induction,
inside HA. This is done by carefully using some double induction. This theorem
is new. Next we will show induction for the set MS of monotonically-colored
subsequences. Monotonically-colored subsequences are used in ordinary proof of
Ramsey theorem and we will show some intuitionistic property of them. Then
by applying Kleene-Brouwer theorem to a part of MS and some orders >u,Left

and >u,Right, we will obtain two Kleene-Brouwer relations >KB1,r and >KB2,r

and show their induction principle. These two relations are simple but necessary
preparation for the next relation. Then by applying Kleene-Brouwer theorem to
some lifted tree determined by >KB2,r and the relation >KB1,r, we will obtain
a Kleene-Brouwer relation >KB,r and show its induction principle. This relation
is a key of the proof. Then we will show that induction for decreasing transi-
tive sequences is reduced to induction for Erdös trees with the relation >KB,r.
An Erdös tree is some set of monotonically-colored sequences and implicitly
used in ordinary proof of Ramsey theorem. Since Erdös trees are in the lifted
tree, by combining them, finally we will prove Podelski-Rybalchenko theorem for
induction.

2.1 Kleene-Brouwer Theorem

We will show Kleene-Brouwer theorem for induction, which states that if we have
both induction principle for a lifted tree (namely 〈u〉 ∗ T for some tree T ) with
respect to the one-step extension relation and induction principle for relations
on children, then we have induction principle for the Kleene-Brouwer relation.
We can prove it by refining an ordinary proof of Kleene-Brouwer theorem for
orders.

We assume Heyting arithmetic HA is defined in an ordinary way with con-
stants and function symbols 0, s,+,×. We define x < y by ∃z.x + sz = y and
x ≤ y by x = y ∨ x < y. We can assume some coding of a sequence of numbers
by a number in Heyting arithmetic, because the definitions on pages 115–117 of
[19] work also in HA. We write 〈t0, . . . , tn〉 for the sequence of t0, . . . , tn. We also
write |t|, and (t)u for the length of the sequence t, and the u-th element of the
sequence t respectively. We write ∗ for the concatenation operation of sequences.
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We write >R or > for a binary relation. We write <R for the binary relation
of the inverse of >R. For notational simplicity, we say X is a set in order to
say there is some first-order formula Fx such that x ∈ X ↔ Fx. Then we also
say t ∈ X in order to say Ft. We write y <R x ∈ X for y <R x ∧ y ∈ X. We
write x ∈ σ when x is an element of the sequence σ. We write U<ω for the set
of finite sequences of elements in U . For a set S of sequences, we write 〈u〉 ∗ S
for {〈u〉 ∗ σ | σ ∈ S}. For a set U and a binary relation >R for U , the induction
principle for (U,>R) is defined as

Ind(U,>R, F ) ≡ ∀x ∈ U((∀y <R x ∈ U.Fy) → Fx) → ∀x ∈ U.Fx,

Ind(U,>R) ≡ Ind(U,>R, F ) (for every formula Fx).

For a set U a set T is called a tree of U if T ⊆ U<ω and T is nonempty and closed
under prefix operations. Note that the empty sequence is a prefix of any sequence.
As a graph, the set of nodes is T and the set of edges is {(x, y) ∈ T 2 | y = x∗〈u〉}.
We call a set T ⊆ U<ω a lifted tree of U when there are a tree T ′ ⊆ U<ω and
r ∈ U such that T = 〈r〉∗T ′. We define LiftedTree(T,U) as a first-order formula
that means T is a lifted tree of U .

For x, y ∈ U<ω we define the one-step extension relation x >ext y if y = x∗〈u〉
for some u. For a set T ⊆ U<ω and σ ∈ U<ω, we define Tσ as {ρ ∈ T | ρ = σ∗ρ′}.
Note that Tσ is a subset of T . For a nonempty sequence σ, we define first(σ) and
last(σ) as the first and the last element of σ respectively.

The next lemma shows induction implies x �> x. The proof is in [6].

Lemma 2.1. If HA � Ind(U,>), then HA � ∀x, y ∈ U(y < x → y �= x).

Definition 2.2 (Kleene-Brouwer Relation). For a set U , a lifted tree T
of U , and a set of binary relations >u on U for every u ∈ U , we define the
Kleene-Brouwer relation >KB for T and {(>u) | u ∈ U} as follows: for x, y ∈ T ,
x >KB y if (1) x = z ∗ 〈u, u1〉 ∗ w1, y = z ∗ 〈u, u2〉 ∗ w2, and u1 >u u2 for some
z, u, u1, w1, u2, w2, or (2) y = x ∗ z for some z �= 〈 〉.

When (>u) is some fixed (>) for all u, for simplicity we call the relation
(>KB) the Kleene-Brouwer relation for T and >.

Note that (>KB) is a relation on T . This Kleene-Brouwer relation is slightly
different from ordinary Kleene-Brouwer order for the following points: it creates
a relation instead of an order, it uses a set of relations indexed by an element, and
it is defined for a lifted tree instead of a tree (in order to use indexed relations).

The next theorem shows induction principle for the Kleene-Brouwer relation.

Theorem 2.3 (Kleene-Brouwer Theorem for Induction). If HA �
LiftedTree(T,U), HA � Ind(T,>ext) and HA � ∀u ∈ U.Ind(U,>u), then
HA � Ind(T,>KB).

Proof. By induction on (T,>ext) with the induction principle Ind(T,>ext), we
will show ∀σ ∈ T.Ind(Tσ, >KB). After we prove it, we can take σ to be 〈 〉 to
show the theorem, since T〈 〉 = T .
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Fix σ ∈ T in order to show Ind(Tσ, >KB). Note that we can use induction
hypothesis for every σ ∗ 〈u〉 ∈ T :

Ind(Tσ∗〈u〉, >KB). (1)

Assume
∀x ∈ Tσ((∀y <KB x ∈ Tσ.Fy) → Fx) (2)

in order to show ∀x ∈ Tσ.Fx. For simplicity we write F (X) for ∀x ∈ X.Fx. Let
Gu ≡ F (Tσ∗〈u〉). By Ind(U,>last(σ)) we will show the following claim.

Claim: ∀u ∈ U.Gu.
Fix u ∈ U in order to show Gu.
By IH for v with >last(σ) we have

v <last(σ) u → F (Tσ∗〈v〉). (3)

We can show

∀x ∈ Tσ∗〈u〉((∀y <KB x ∈ Tσ∗〈u〉.Fy) → (∀y <KB x ∈ Tσ.Fy)) (4)

as follows. Fix x ∈ Tσ∗〈u〉, assume

∀y <KB x ∈ Tσ∗〈u〉.Fy (5)

and assume y <KB x ∈ Tσ in order to show Fy. By definition of >KB, we have
y ∈ Tσ∗〈v〉 for some v <last(σ) u, or y ∈ Tσ∗〈u〉. In the first case, Fy by (3). In
the second case, Fy by (5). Hence we have shown (4).

Combining (4) with (2), we have

∀x ∈ Tσ∗〈u〉((∀y <KB x ∈ Tσ∗〈u〉.Fy) → F (x)). (6)

By IH (1) for σ ∗ 〈u〉, we have Ind(Tσ∗〈u〉, >KB), namely,

∀x ∈ Tσ∗〈u〉((∀y <KB x ∈ Tσ∗〈u〉.Fy) → Fx) → ∀x ∈ Tσ∗〈u〉.Fx. (7)

By (6), (7), F (Tσ∗〈u〉). Hence we have shown the claim.
If y <KB σ ∈ Tσ, we have y ∈ Tσ∗〈u〉 for some u, since y <KB σ implies y �= σ

by definition of KB and Lemma 2.1 for >u. By the claim, Fy. Hence

∀y <KB σ ∈ Tσ.Fy. (8)

By letting x := σ in (2), we have (∀y <KB σ ∈ Tσ.Fy) → Fσ. By (8), Fσ.
Combining it with the claim, ∀x ∈ Tσ.Fx. ��

2.2 Proof Ideas for Podelski-Rybalchenko Theorem for Induction

In this subsection we will explain proof ideas of Theorem 2.15.
A sequence u1 >R u2 >R u3 >R . . . is called transitive when ui >R uj for

any i < j. We say the edge from u to v is of color R when u >R v. A sequence
is called monotonically-colored when for any element there is a color such that
the edge from the element to any element after it in the sequence has the same
color.
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Definition 2.4. For a set U and a relation > for U , we define the set DS(U,>) of
decreasing sequences as {〈x0, . . . , xn−1〉 | n ≥ 0, xi ∈ U,∀i < n − 1.(xi > xi+1)}.

We define the set DT(U,>) of decreasing transitive sequences by
{〈x0, . . . , xn−1〉 | n ≥ 0, xi ∈ U,∀i(∀j ≤ n − 1.(i < j → xi > xj))}.

We define >R1∪...∪Rk
as the union of >Ri

for all 1 ≤ i ≤ k. We define
>R1+...+Rk

as the disjoint union of >Ri
for all 1 ≤ i ≤ k. (Whenever we use it,

we implicitly assume the disjointness is provable in HA.)
We define MonoseqR1,...,Rk

(x) to hold when x = 〈x0, . . . , xn−1〉 ∈
DT(U,>R1+...+Rk

) and ∀i < n − 1.(∀j ≤ n − 1.(i < j →
∧

1≤l≤k

(xi >Rl

xi+1 → xi >Rl
xj))). Note that n may be 0.

We define MS as {x ∈ DT(U,>R1+...+Rk
) | MonoseqR1,...,Rk

(x)}.

MS is the set of monotonically-colored finite sequences. Note that MS〈r〉 is a
subset of MS (by taking T and σ to be MS and 〈r〉 in our notation Tσ) and a
lifted tree of U for any r ∈ U .

We will show Podelski-Rybalchenko theorem for induction stating that if a
transition invariant >Π is a finite union of relations >π such that each Ind(>n

π)
is provable for some n, and each (>π) is decidable, then Ind(>Π) is provable.

First each Ind(>π) is obtained by Ind(>n
π). Next by the decidability of each

(>π), we can assume all of (>π) are disjoint to each other. For simplicity, we
explain the idea of our proof for well-foundedness instead of induction principle.

Assume the relation >Π has some infinite decreasing transitive sequence

u1 >Π u2 >Π u3 >Π . . .

in order to show contradiction.
The set MS will be shown to be well-founded with the one-step extension

relation. For a decreasing transitive sequence x of U , a lifted tree T ∈ U<ω is
called an Erdös tree of x when the elements of x are the same as elements of
elements of T , every element of T is monotonically-colored, and the edges from
a parent to its children have different colors. Let ET be a function that returns
an Erdös tree of a given decreasing transitive sequence. Then we consider

ET(〈u1〉),ET(〈u1, u2〉),ET(〈u1, u2, u3〉), . . . .
Define MS〈r〉 as the set of sequences beginning with r in MS. Define >KB1,r

as the Kleene-Brouwer relation for the lifted tree MS〈r〉 and some left-to-right-
decreasing relation on children of the lifted tree. Define >KB2,r as the Kleene-
Brouwer relation for the lifted tree MS〈r〉 and some right-to-left-decreasing rela-
tion on children of the lifted tree. By Kleene-Brouwer theorem, (>KB1,r) and
(>KB2,r) are well-founded. Define ET2(〈u1, . . . , un〉) as the (>KB2,u1)-sorted
sequence of elements in ET(〈u1, . . . , un〉). Then consider

ET2(〈u1〉),ET2(〈u1, u2〉),ET2(〈u1, u2, u3〉), . . . .
Define >KB,r as the Kleene-Brouwer relation for >KB1,r and the set of

(>KB2,r)-sorted finite sequences of elements in MS〈r〉. This definition is a key
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idea. By this definition, we can show the most difficult step in this proof:

ET2(〈u1〉) >KB,u1 ET2(〈u1, u2〉) >KB,u1 ET2(〈u1, u2, u3〉) >KB,u1 . . . .

Since (>KB,u1) is well-founded by Kleene-Brouwer theorem, we have contradic-
tion. Hence we have shown u1 >Π u2 >Π u3 >Π . . . terminates.

In general we need classical logic to derive induction principle from well-
foundedness, but the idea we have explained will work well for showing induction
principle in intuitionistic logic.

2.3 Proof of Podelski-Rybalchenko Theorem for Induction

This subsection gives a proof of Podelski-Rybalchenko Theorem for Induction.
The next lemma shows that induction principle for each relation implies

induction principle for monotonically-colored sequences. This lemma can be
proved by refining Lemma 6.4 (1) of [3] from second-order logic to first-order
logic. The proof is given in [6].

Lemma 2.5. If HA � Ind(DT(U,>Ri
), >ext) for all 1 ≤ i ≤ k, then HA �

∀r ∈ U.Ind(MS〈r〉, >ext).

Next we create Kleene-Brouwer relations >KB1,r and >KB2,r for
monotonically-colored sequences beginning with r. Then we consider the set of
(>KB2,r)-sorted finite sequences of monotonically-colored finite sequences begin-
ning with r. It is a lifted tree. Then, by induction principle for MS, the lifted
tree is well-founded with the one-step extension relation. The Kleene-Brouwer
relation for the lifted tree and >KB1,r gives us >KB,r for the lifted tree. Since an
Erdös tree is in the lifted tree, this will later show induction principle for Erdös
trees.

Definition 2.6. For u ∈ U , we define >u,Left for U by: u1 >u,Left u2 if u >Rj
u1,

u >Rl
u2, and j < l for some j, l.

We define >KB1,r for MS〈r〉 as the KB relation for MS〈r〉 ⊆ U<ω and (>u,Left)
⊆ U2 for all u ∈ U .

For u ∈ U , we define >u,Right for U by: u1 >u,Right u2 if u1 <u,Left u2.
We

define >KB2,r for MS〈r〉 as the KB relation for MS〈r〉 ⊆ U<ω and (>u,Right)
⊆ U2 for all u ∈ U .

We define >KB,r for DS(MS〈r〉, >KB2,r)〈〈r〉〉 as the KB relation for
DS(MS〈r〉, >KB2,r)〈〈r〉〉 ⊆ MS<ω

〈r〉 and >KB1,r.

>u,Left is the left-to-right-decreasing order of children of u in some ordered tree
of U in which the edge label Ri is put to an edge (x, y) such that x >Ri

y, each
parent has at most one child of the same edge label, and children are ordered
by their edge labels with R1 < . . . < Rk. Similarly >u,Right is the right-to-left-
decreasing order of children of u in the ordered tree.
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Definition 2.7. For u ∈ U ⊆ N , finite T ⊆ MS such that ∀ρ ∈ T.∀v ∈
ρ.(v >R1+...+Rk

u), and for σ ∈ T , we define the function insert by:

insert(u, T, σ) =
insert(u, T, σ ∗ 〈v〉) if last(σ) >Ri

u, v = μv.(σ ∗ 〈v〉 ∈ T ∧ last(σ) >Ri
v),

T ∪ {σ ∗ 〈u〉} otherwise,

where μv.F (v) denotes the least element v with the natural number order such
that F (v). Formally insert(u, T, σ) = T ′ is an abbreviation of some HA-formula
G(u, T, σ, T ′). It is the same for ET below.

For x ∈ DT(U,>R1+...+Rk
) − {〈 〉}, we define ET(x) ⊆ MS by

ET(〈u〉) = {〈u〉},

ET(x ∗ 〈u〉) = insert(u,ET(x), 〈first(x)〉) if x �= 〈 〉.
Note that insert(u, T, σ) adds a new element u to the set T at some position
below σ to obtain a new set. ET(x) is an Erdös tree obtained from the decreasing
transitive sequence x.

The next lemma (1) states a new element is inserted at a leaf. It is proved
by induction on the number of elements in T . The claim (2) states that edges
from a parent to its children have different colors. It is proved by induction on
the length of x.

Lemma 2.8. (1) For u ∈ U , T ⊆ MS, and σ ∈ T , if u /∈ ρ for all ρ ∈ T ,
σ = 〈x0, . . . , xn−1〉, xi >Rj

xi+1 implies xi >Rj
u for all i < n − 1, and

insert(u, T, σ) = T ′, then there is some ρ ∈ Tσ such that ρ ∗ 〈u〉 ∈ MS, T ′ =
T + {ρ ∗ 〈u〉}, and ρ ∗ 〈u〉 is a maximal sequence in T ′.

(2) If σ ∗ 〈u, u1〉 ∗ ρ1, σ ∗ 〈u, u2〉 ∗ ρ2 ∈ ET(x), u >Ri
u1, and u >Ri

u2, then
u1 = u2.

Definition 2.9. For x ∈ DT(U,>R1+...+Rk
) − {〈 〉}, we define

ET2(x) ≡ 〈x0, . . . , xn−1〉
where {x0, . . . , xn−1} = ET(x) and ∀i < n − 1.(xi >KB2,first(x) xi+1).

Note that >KB2,first(x) is a total order on ET(x) by Lemma 2.8 (2). ET2(x) is the
decreasing sequence of all nodes in the Erdös tree ET(x) ordered by >KB2,first(x).

The next lemma shows ET2 is monotone. It is the key property of reduction
in Lemma 2.11.

Lemma 2.10. HA � ∀r ∈ U.∀x, y ∈ DT(U,>R1+...+Rk
)〈r〉.(x >ext y →

ET2(x) >KB,r ET2(y)).

Proof. Fix r ∈ U and x, y ∈ DT(U,>R1+...+Rk
)〈r〉 and assume x >ext y. Let

y = x ∗ 〈u〉. Then ET(y) = insert(u,ET(x), 〈r〉). By Lemma 2.8 (1), we have σ
such that ET(y) = ET(x) + {σ ∗ 〈u〉}. Then we have two cases:

Case 1. last(ET2(x)) >KB2,r σ ∗ 〈u〉.
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Then ET2(y) = ET2(x) ∗ 〈σ ∗ 〈u〉〉. By definition, ET2(x) >KB,r ET2(y).
Case 2. σ ∗ 〈u〉 >KB2,r τ for some τ ∈ ET2(x).
Let ρ be the next element of σ ∗ 〈u〉 in ET2(y). Then ET2(x) = α ∗ 〈ρ〉 ∗ β

and ET2(y) = α ∗ 〈σ ∗ 〈u〉, ρ〉 ∗ β. By definition of ET2, σ ∗ 〈u〉 >KB2,r ρ. Since
σ ∗ 〈u〉 is maximal in ET(y) by Lemma 2.8 (1), there is no α �= 〈 〉 such that
σ ∗ 〈u〉 ∗ α = ρ. Hence σ ∗ 〈u〉 <KB1,r ρ. Hence ET2(x) >KB,r ET2(y). ��

The next lemma shows that induction for decreasing transitive sequences is
reduced to induction for Erdös trees with >KB,r.

Lemma 2.11. HA � ∀r ∈ U.Ind(ET2(DT(U,>R1+...+Rk
)〈r〉), >KB,r) implies

HA � Ind(DT(U,>R1+...+Rk
), >ext).

Proof sketch. In order to show Ind(DT(U,>R1+...+Rk
), >ext) for F , define Gy ≡

∀z ∈ DT(z �= 〈 〉 → ET2(z) = y → Fz) and use Ind(ET2(DT(U,>R1+...+Rk
)〈r〉),

>KB,r) for G and Lemma 2.10. The proof is in [6]. ��
The next lemma shows induction holds when we restrict the universe. The

proof is in [6].

Lemma 2.12. HA � Ind(U,>) and HA � V ⊆ U imply HA � Ind(V,>).

The next lemma shows induction is implied from induction for decreasing
sequences. The proof is in [6].

Lemma 2.13. HA � Ind(DS(U,>), >ext) implies HA � Ind(U,>).

The next lemma shows induction for a power of a relation implies induction for
the relation. The proof is in [6].

Lemma 2.14. HA � Ind(U,>n) implies HA � Ind(U,>).

Define

Trans(U,>R) ≡ ∀xyz ∈ U(x >R y ∧ y >R z → x >R z),
Decide(U,>R) ≡ ∀xy ∈ U(x >R y ∨ ¬(x >R y)).

The next theorem states that if some powers of relations >Ri
have induction

principle, >Ri
are decidable and their union is transitive, then the union has

induction principle. This theorem is the same as Theorem 6.1 in [5] except HA
and the decidability condition Decide(U,>Ri

).

Theorem 2.15 (Podelski-Rybalchenko Theorem for Induction). If
HA � Ind(U,>n1

R1
), HA � Decide(U,>R1), . . . , HA � Ind(U,>nk

Rk
), HA �

Decide(U,>Rk
), and HA � Trans(U,>R1+...+Rk

), then Ind(U,>R1+...+Rk
).

Proof. We will discuss in HA.
By Lemma 2.14, we can replace ni by 1 and obtain Ind(U,>Ri

). In order to
obtain disjoint relations, we define >R′

1
as >R1 and >R′

i+1
as (>Ri+1) − (>R′

1
)

− . . . − (>R′
i
). Then (>R′

1
), . . . , (>R′

k
) are disjoint and ∀xy ∈ U(x >R1∪...∪Rk
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y → x >R′
1+...+R′

k
y) by Decide(U,>Ri

) for 1 ≤ i ≤ k. Since (>R′
i
) ⊆ (>Ri

),
Ind(U,>R′

i
). For simplicity, from now on we write >Ri

for >R′
i
in this proof. We

will show Ind(U,>R1+...+Rk
).

From Ind(U,>Ri
), by replacing induction on elements by induction on

sequences, we have Ind(DT(U,>Ri
), >ext) for 1 ≤ i ≤ k. By Lemma 2.5,

we have ∀r ∈ U.Ind(MS〈r〉, >ext). Apparently ∀u ∈ U.Ind(U,>u,Left). By tak-
ing U to be U , T to be MS〈r〉, and >u to be >u,Left in Theorem 2.3 for
>KB1,r, we have ∀r ∈ U.Ind(MS〈r〉, >KB1,r). By Theorem 2.3 for >KB2,r,
we have ∀r ∈ U.Ind(MS〈r〉, >KB2,r) similarly. By replacing induction on ele-
ments by induction on sequences, we have ∀r ∈ U.Ind(DS(MS〈r〉, >KB2,r), >ext).
Since DS(MS〈r〉, >KB2,r)〈〈r〉〉 is a subset of DS(MS〈r〉, >KB2,r), from Lemma
2.12, we have ∀r ∈ U.Ind(DS(MS〈r〉, >KB2,r)〈〈r〉〉, >ext). By taking T to be
DS(MS〈r〉, >KB2,r)〈〈r〉〉, U to be MS〈r〉, and (>u) to be (>KB1,r) in Theo-
rem 2.3 for >KB,r, we have ∀r ∈ U.Ind(DS(MS〈r〉, >KB2,r)〈〈r〉〉, >KB,r). This
is a key step of this proof. Since ET2(DT(U,>R1+...+Rk

)〈r〉) ⊆ DS(MS〈r〉,
>KB2,r)〈〈r〉〉, by Lemma 2.12, we have ∀r ∈ U.Ind(ET2(DT(U,>R1+...+Rk

)〈r〉),
>KB,r). By Lemma 2.11, Ind(DT(U,>R1+...+Rk

), >ext). By Trans(U,
>R1+...+Rk

), DT(U,>R1+...+Rk
) is DS(U,>R1+...+Rk

). Hence we have Ind(DS(U,
>R1+...+Rk

), >ext). From Lemma 2.13, by replacing induction on sequences by
induction on elements, we have Ind(U,>R1+...+Rk

). ��

3 Cyclic Proofs

3.1 Intuitionistic Martin-Löf ’s Inductive Definition System LJID

We define an intuitionistic Martin-Löf’s inductive definition system, called
LJID.

The language of LJID is determined by a first-order language with inductive
predicate symbols. The logical system LJID is determined by production rules
for inductive predicate symbols. These production rules mean that the inductive
predicate denotes the least fixed point defined by these production rules.

We assume the first order terms t, u, . . .. We assume ∀x and ∃y are less tightly
connected than other logical connectives. To save space, we sometimes write Pxy
and Fxy for P (x, y) and F (x, y).

For example, the production rules of the inductive predicate symbol N are

N0
Nx
Nsx

These production rules mean that N denotes the smallest set closed under 0 and
s, namely the set of natural numbers.

The inference rules of LJID contains the introduction rules and the elimi-
nation rules for inductive predicates, determined by the production rules. These
rules describe that the predicate actually denotes the least fixed point. In par-
ticular, the elimination rule describes the induction principle.
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For example, the above production rules give the introduction rules

Γ � N0
Γ � Nx
Γ � Nsx

and the elimination rule

Γ � F0 Γ, Fx � Fsx

Γ,Nt � Ft

This elimination rule describes mathematical induction principle.

Fig. 1. Inference rules

The inference rules are given in Fig. 1 where for (Pi R) we assume the pro-
duction rule

Q1
−→u 1 . . . Qn

−→u n P1
−→
t 1 . . . Pm

−→
t m

P
−→
t

and for (Ind Pj) we assume a predicate Fi for each Pi and the minor premises
are defined as

Γ,Qi1
−→u i1, . . . , Qini

−→u ini
, F1

−→
t i1, . . . , Fimi

−→
t imi

� Fi
−→
t i

for each production rule

Qi1
−→u i1 . . . Qini

−→u ini
P1

−→
t i1 . . . Pimi

−→
t imi

Pi
−→
t i
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Note that the antecedents and the succedents are sets and the succedent is empty
or a formula.

The system LJID is the same as the system obtained from classical Martin-
Löf’s inductive definition system LKID defined in [11] by restricting every
sequent to intuitionistic sequents and replacing (→L), (∨R), and (Ind Pj) accord-
ingly. The provability of the system LJID is the same as that of the natural
deduction system given in [16].

3.2 Cyclic Proof System CLJIDω

An intuitionistic cyclic proof system, called CLJIDω, is defined as the system
obtained from classical cyclic proof system CLKIDω defined in [11] by restrict-
ing every sequent to intuitionistic sequents and replacing (→L) and (∨R) in the
same way as LJID. Note that the global trace condition in CLJIDω is the same
as that in CLKIDω (Definition 5.5 of [11]).

Namely, the inference rules of CLJIDω are obtained from LJID by replacing
(IndPj) by

case distinctions
Γ, P−→u � Δ

(CaseP )

where the case distinctions are

Γ,−→u =
−→
t ,Q1

−→u 1, . . . , Qn
−→u n, P1

−→
t 1, . . . , Pm

−→
t m � Δ

for each production rule

Q1
−→u 1 . . . Qn

−→u n P1
−→
t 1 . . . Pm

−→
t m

P
−→
t

A cyclic proof in CLJIDω is defined by (1) allowing a bud as an open assumption
and requiring a companion for each bud, (2) requiring the global trace condition.

The global trace condition [8,10] is the condition that for every infinite path
in the infinite unfolding of a given cyclic proof, there is a trace that passes main
formulas of case rules infinitely many times. The global trace condition ensures
that when we think some measure by counting case rules, the measure of a bud
is smaller than that of the companion. For example, in the next example the
companion (a) uses Px0y, but the bud (a) uses Px0y where x is x′ and x′ < x,
so their actual meanings are different even though they are of the same form.
The global trace condition guarantees the soundness of a cyclic proof system.

An example of a cyclic proof (trivial steps are omitted) is as follows:

� 0 = 0
x = 0, y = 0, Px0y � x = y

(a)Px0y � x = y

Px′0y′ � x′ = y′ (Subst)

Px′0y′, x = sx′, y = sy′ � x′ = y′ (Wk)

Px′0y′, x = sx′, y = sy′ � sx′ = sy′

Px′0y′, x = sx′, y = sy′ � x = y

(a)Px0y � x = y
(Case P )
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where the mark (a) denotes the bud-companion relation, and the production
rules are

P0yy

Pxyz

P (sx)y(sz)

Note that the predicate P is addition on natural numbers and the proof is,
essentially, deriving the arithmetic identity x + 0 = x.

We call an atomic formula an inductive atomic formula when its predicate
symbol is an inductive predicate symbol.

3.3 Cyclic Proofs for Coinductive Predicates

This subsection shows how we can use a cyclic proof system to formalize coinduc-
tive predicates. Since a coinductive predicate is a dual of an inductive predicate,
and sequent calculus is symmetric for this dual, we can construct a cyclic proof
system for coinductive predicates. For example, for stream predicates we can
define a cyclic proof system μνLK from CLKIDω as follows:

(1) Add function symbols head, tail, and the pair 〈 , 〉 with the axioms 〈x, y〉 =
〈x′, y′〉→x = x′∧y = y′ and x = 〈head x, tail x〉, and a coinductive predicate
symbol P with its coproduction rule

Qyx Px

P 〈y, x〉 co

which means P is defined coinductively by this rule. Note that P represents
the set of streams 〈x0, 〈x1, 〈x2, 〈. . .〉〉〉 such that Q(xi, 〈xi+1, 〈xi+2, 〈. . .〉〉) for
all i.

(2) Add the inference rules (P R) and (Case P ) in the same way as CLKIDω,
namely,

Γ, t = 〈y, x〉, Qyx, Px � Δ

Γ,Pt � Δ
(Case P )

Γ � Qyx,Δ Γ � Px,Δ

Γ � P 〈y, x〉,Δ (P R)

(3) We call an atomic formula a coinductive atomic formula when its predicate
symbol is a coinductive predicate symbol. We define a cotrace as a sequence
of coinductive atomic formulas in the succedents of a path such that two
atomic formulas are related by an inference rule in a similar way to a trace
defined in [11]. The global trace and cotrace condition is the condition that
for every infinite path in the infinite unfolding of a given cyclic proof, the
path contains either a trace that passes main formulas of case rules infinitely
many times, or a cotrace that passes main formulas of rules (P R) infinitely
many times.

(4) A cyclic proof is a preproof that satisfies the global trace and cotrace con-
dition.
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Example. We define the bit stream predicate BS by the following coproduction
rules:

Bit y BS x

BS〈y, x〉 co

where Bit is an ordinary predicate symbol with the axiom Bit x ↔ x = 0∨x = 1.
The inference rules from this production rule are:

Γ � Bit y,Δ Γ � BS x,Δ

Γ � BS〈y, x〉,Δ (BS R)
Γ, t = 〈y, x〉,Bit y,BS x � Δ

Γ,BS t � Δ
(Case BS)

Then we can show x = 〈0, x〉 � BS x, namely, the zero stream is a bit stream,
as follows (trivial steps are omitted):

x = 〈0, x〉 � Bit 0 (a) x = 〈0, x〉 � BS x

x = 〈0, x〉 � BS〈0, x〉 (BS R)

(a) x = 〈0, x〉 � BS x

where (a) denotes the bud-companion relation.
The cyclic proof system μνLK is sound for the standard model.

Theorem 3.1. If a sequent is provable in μνLK, then it is true in the standard
model where a coinductive predicate is interpreted as the greatest fixed point that
satisfies the coproduction rules.

Proof sketch. We add an ordinary predicate symbol Q̃ with the axiom Q̃yx ↔
¬Qyx and add an inductive predicate symbols P̃ with the production rules

Q̃(head x)(tail x)

P̃ x

P̃ (tail x)

P̃ x

In the standard model, P is the greatest solution of the equation

Px ↔ ∃yx′(x = 〈y, x′〉 ∧ Qyx′ ∧ Px′)

and P̃ is the least solution of the equation

P̃ x ↔ Q̃(head x)(tail x) ∨ P̃ (tail x).

By putting ¬ on both sides of the equation for P and taking y and x′ to be
head x and tail x, we can show ¬P is a solution of the equation for P̃ . Hence
P̃ x→¬Px is true. In the same say by putting ¬ on both sides of the equation for
P̃ , and using x = 〈headx, tailx〉, we can show ¬P̃ is a solution of the equation
for P . Hence ¬P̃ x → Px is true. Therefore P̃ x ↔ ¬Px is true.

We define a transformation ( )− for a sequent and a proof, in order to replace
P by P̃ . For a sequent J , we define J− by replacing P by ¬P̃ and then moving
an atomic formula ¬P̃ t of the antecedent to P̃ t of the succedent and moving an
atomic formula ¬P̃ t of the succedent to P̃ t of the antecedent.
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Given a cyclic proof π, we define π− by replacing each sequent J by J− and
then replacing (P R) by

Γ− � Qyx′,Δ−

Γ−, Q̃yx′ � Δ− Γ−, P̃ x′ � Δ−

Γ−, P̃ 〈y, x′〉 � Δ− (Case P̃ )
(trivial steps are omitted)

and replacing (CaseP ) by

Γ−, x = 〈y, x′〉, Qyx′ � P̃ x′,Δ−

Γ−, x = 〈y, x′〉 � Q̃yx′, P̃ x′,Δ−

Γ−, x = 〈y, x′〉 � Q̃yx′, P̃ x,Δ− (P̃ R)

Γ−, x = 〈y, x′〉 � P̃ x,Δ− (P̃ R)

Γ− � P̃ x,Δ− (trivial steps are omitted)

Then a cotrace in π corresponds to a trace in π−. Hence π− is a cyclic proof
of J− in CLKIDω when π is a cyclic proof of J in μνLK. By the soundness of
CLKIDω, J− is true in the standard model. Since P̃ x ↔ ¬Px is true, J is true
in the standard model where P is interpreted as the greatest fixed point. ��

4 Equivalence Between LJID and CLJIDω

This section studies the equivalence between CLJIDω and LJID.

4.1 Countermodel and Addition of Heyting Arithmetic

This subsection gives a countermodel and adds arithmetic to the logical systems.
The counterexample given in [4] also shows that the equivalence between

CLJIDω and LJID does not hold in general, because the proof of the statement
H in [4] is actually in CLJIDω, and LJID does not prove H since LKID does
not prove H. This gives us the following theorem (it is not new in the sense [4]
immediately implies it).

Theorem 4.1. There are some signature and some set of production rules for
which the provability of CLJIDω is not the same as that of LJID.

There is a possibility of the equivalence under some conditions. We will show
the equivalence holds by adding arithmetic to both systems.

We add arithmetic to both LJID and CLJIDω.
Definition 4.2. CLJIDω + HA and LJID + HA are defined to be obtained
from CLJIDω and LJID by adding Heyting arithmetic. Namely, we add con-
stants and function symbols 0, s,+,×, the inductive predicate symbol N , the
productions for N , and Heyting axioms:

N0
Nx
Nsx � Nx → sx �= 0, � Nx ∧ Ny → sx = sy → x = y,

� Nx → x + 0 = x, � Nx ∧ Ny → x + sy = s(x + y),
� Nx → x × 0 = 0, � Nx ∧ Ny → x × sy = x × y + x.
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4.2 Equivalence Theorem

In this subsection we state the equivalence theorem and explains proof ideas.
First we assume a new inductive predicate symbol P ′ for each inductive

predicate symbol P and define the production rules of P ′ in the same way as [5].

Definition 4.3. We define the production rule of P ′

Q1
−→u 1 . . . Qn

−→u n v > v1 P ′
1
−→
t 1v1 . . . v > vm P ′

m
−→
t mvm Nv

P ′−→t v

for each production rule of P

Q1
−→u 1 . . . Qn

−→u n P1
−→
t 1 . . . Pm

−→
t m

P
−→
t

where v, v1, . . . , vm are fresh variables.

We write LJID + HA + (Σ,Φ) for the system LJID + HA with the signa-
ture Σ and the set Φ of production rules. Similarly we write CLJIDω + HA +
(Σ,Φ). For simplicity, in Φ we write only P for the set of production rules for
P . We define ΣN = {0, s,+,×, <,N} and ΦN = {N}. We write P ′′ for (P ′)′.

The next theorem shows the equivalence of LJID + HA and CLJIDω + HA
with signatures.

Theorem 4.4 (Equivalence of LJID + HA and CLJIDω + HA). Let
Σ = ΣN ∪ {−→

Q,
−→
P ,

−→
P ′} and Φ = ΦN ∪ {−→

P ,
−→
P ′}. Then the provability of

CLJIDω + HA + (Σ,Φ) is the same as that of LJID + HA + (Σ,Φ).

We explain our ideas of proofs of this theorem. [5] shows the equivalence
between classical systems by using classical Podelski-Rybalchenko theorem for
induction. This proof goes well even if we replace classical systems by intu-
itionistic systems except that we have to replace classical Podelski-Rybalchenko
theorem for induction by intuitionistic Podelski-Rybalchenko theorem for induc-
tion. Since we proved intuitionistic Podelski-Rybalchenko theorem for induction
in Theorem 2.15, by combining them, we can show the equivalence between
LJID and CLJIDω.

5 Proof Transformation

This section gives the proof of the equivalence. More detailed discussions
are given in [6]. We define proof transformation from CLJIDω + HA to
LJID + HA. First we will define stage numbers and path relations, and then
define proof transformation using them.

For notational convenience, we assume a cyclic proof Π in this section. Let
the buds in Π be J1i (i ∈ I) and the companions be J2j (j ∈ K). Assume
f : I → K such that the companion of a bud J1i is J2,f(i).
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5.1 Stage Numbers for Inductive Definitions

In this subsection, we define and discuss stage transformation.
We introduce a stage number to each inductive atomic formula so that the

argument of the formula comes into the inductive predicate at the stage of the
stage number. This stage number will decrease by a progressing trace. A proof
in LJID + HA will be constructed by using the induction on stage numbers.

First we give stage transformation of an inductive atomic formula. We assume
a fresh inductive predicate symbol P ′ for each inductive predicate symbol P and
we call it a stage-number inductive predicate symbol. P ′(

−→
t , v) means that the

element
−→
t comes into P at the stage v. We transform P (

−→
t ) into ∃vP ′(

−→
t , v).

We call a variable v a stage number of
−→
t when P ′(

−→
t , v). P (

−→
t ) and ∃vP ′(

−→
t , v)

will become equivalent by inference rules introduced by the transformation of
production rules. We call P ′(

−→
t , v) a stage-number inductive atomic formula.

Secondly we give stage transformation of a production rule. We transform
the production of P into the production of P ′ given in Definition 4.3.

Next we give the stage transformation of a sequent. For given fresh variables−→v , we transform a sequent J into J◦−→v defined as follows. We define Γ • as the
set obtained from Γ by replacing P (

−→
t ) by ∃vP ′(

−→
t , v). For fresh variables −→v ,

we define (Γ )◦−→v as the sequent obtained from Γ • by replacing the i-th element
of the form ∃vP ′(

−→
t , v) in the sequent Γ • by P ′(

−→
t , vi). We define (Γ � Δ)• by

Γ • � Δ•, and define (Γ � Δ)◦−→v by (Γ )◦−→v � Δ•.
We write (ai)i∈I for the sequence of elements ai where i varies in I. We extend

the notion of proofs by allowing open assumptions. We write Γ �CLJIDω+HA Δ
with assumptions (Ji)i∈I when there is a proof with assumptions (Ji)i∈I and the
conclusion Γ � Δ in CLJIDω + HA.

Definition 5.1. In a path π in a proof, we define Ineq(π) as the set of the forms
v > v′ and v = v′ for any stage numbers v, v′ eliminated by every case distinction
in π.

The proof of the next proposition gives stage transformation of a proof into a
proof of the stage transformation of the conclusion of the original proof. We
write Π◦ for the stage transformation of Π.

Proposition 5.2 (Stage Transformation). For any fresh variables −→v , if
Γ �CLJIDω+HA Δ with assumptions (Γi � Δi)i∈I without any buds, then for
some fresh variables (−→v i)i∈I we have (Γ )◦−→v �CLJIDω+HA Δ• with assumptions
(Ineq(πi), (Γi)◦−→v i

� Δ•
i )i∈I without any buds, where πi is the path from the con-

clusion to the assumption (Γi)◦−→v i
� Δ•

i .

5.2 Path Relation

In this section, we will introduce path relations and discuss them.
We assume a subproof Πj of Π such that it does not have buds, its conclusion

is J2j and its assumptions are J1i (i ∈ Ij).
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For J in Π◦
j , we define J̃ as 〈v1, . . . , vk〉 where J is Γ ◦

v1...vk
� Δ•.

For a path π from the conclusion to an assumption in Π◦
j , we write π̌ for

the corresponding path in Π. We extend this notation to a finite composition
of π’s. By the correspondence (̌ ), a stage-number inductive atomic formula in
Π◦

j corresponds to an inductive atomic formula in Π, and a path, a trace, and
a progressing trace in Π◦

j correspond to the same kind of objects in Π.

Definition 5.3. For a finite composition π of paths in {Π◦
j | j ∈ K} such that

π̌ is a path in the infinite unfolding of Π, we define the path relation >̃π by

x>̃πy ≡ |x| = |J̃2| ∧ |y| = |J̃1| ∧
∧

F (q1,q2)

(x)q2 > (y)q1 ∧
∧

G(q1,q2)

(x)q2 = (y)q1

where J1 and J2 are the top and bottom sequents of π respectively, J̌1 and J̌2

are those of the path π̌, F (q1, q2) is that there is some progressing trace from
the q2-th atomic formula in J̌2 to the q1-th atomic formula in J̌1, G(q1, q2) is
that there is some non-progressing trace from the q2-th atomic formula in J̌2 to
the q1-th atomic formula in J̌1.

We define B1 as the set of paths from conclusions to assumptions in Π◦
j (j ∈

K). We define B as the set of finite compositions of elements in B1 such that if
π ∈ B then π̌ is a path in the infinite unfolding of Π.

Definition 5.4. For π ∈ B, define x >π y by

x >π y ≡ (x)0 = j ∧ (y)0 = f(i) ∧ (x)1>̃π(y)1,

where J1i is the top sequent of π̌, and J2j is the bottom sequent of π̌.

Note that ( )0 and ( )1 are operations for a number that represents a sequence of
numbers defined in Sect. 3. The first element is a companion number.

Lemma 5.5. {>π | π ∈ B} is finite.

Proof. Define Cn as {>π1...πm
| m ≤ n, πi ∈ B1}. Since >π is a relation on

N × N≤p where p is the maximum number of inductive atomic formulas in the
antecedents of Π, there is L such that |Cn| ≤ L for all n. Then we have the least
n such that Cn+1 = Cn. Then |{>π | π ∈ B}| = |Cn|. ��

The next lemma is the only lemma that uses the global trace condition.

Lemma 5.6. For all π ∈ B, there is n > 0 such that �HA Ind(U,>n
π).

We define >Π as
⋃{>π | π ∈ B}. Note that >Π is transitive, since the top

sequent of π1 is the bottom sequent of π2 by the first element, and ((>π1) ◦
(>π2)) ⊆ (>π1π2).
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5.3 Proof Transformation

This section gives proof transformation.
The next lemma shows we can replace (Case) rules of CLJIDω + HA by

(Ind) rules of LJID + HA.

Lemma 5.7. If there is a proof with some assumptions and without any buds
in CLJIDω + HA, then there is a proof of the same conclusions with the same
assumptions in LJID + HA.

The next is a key lemma and shows each bud in a cyclic proof is provable in
LJID + HA, which is proved by using Theorem 2.15.

Lemma 5.8. For every bud J of a proof in CLJIDω + HA and fresh variables−→v , (J)◦−→v is provable in LJID + HA.

The next is the main proposition stating that a cyclic proof is transformed into
an (LJID + HA)-proof with stage-number inductive predicates.

Proposition 5.9. If a sequent J is provable in CLJIDω + HA + (ΣN ∪
{−→
P }, ΦN ∪{−→

P }), then J is provable in LJID + HA+(ΣN ∪{N ′,
−→
P ,

−→
P ′}, ΦN ∪

{−→
P ,

−→
P ′}) where N ′,

−→
P ′ are the stage-number inductive predicates of N,

−→
P .

The next shows conservativity for stage-number inductive predicates.

Proposition 5.10 (Conservativity of N ′ and P ′′). Let Σ = ΣN ∪
{−→
Q,

−→
P ,

−→
P ′}, Φ = ΦN ∪ {−→

P ,
−→
P ′}, Σ′ = Σ ∪ {N ′,

−→
P ′′}, and Φ′ = Φ ∪ {N ′,

−→
P ′′}.

Then LJID + HA + (Σ′, Φ′) is conservative over LJID + HA + (Σ,Φ).

Proof of Theorem 4.4. (1) LJID + HA+(Σ,Φ) to CLJIDω + HA+(Σ,Φ).
For this claim, we can obtain a proof from the proof of Lemma 7.5 in [11] by

restricting every sequent into intuitionistic sequents and replacing LKID+(Σ,Φ)
and CLKIDω + (Σ,Φ) by LJID + (Σ,Φ) and CLJIDω + (Σ,Φ) respectively.

(2) CLJIDω + HA + (Σ,Φ) to LJID + HA + (Σ,Φ).
Let Σ′ = Σ ∪ {N ′,

−→
P ′′} and Φ′ = Φ ∪ {N ′,

−→
P ′′}. Assume J is provable in

CLJIDω + HA + (Σ,Φ). By Proposition 5.9, J is provable in LJID + HA +
(Σ′, Φ′). By Proposition 5.10, J is provable in LJID + HA + (Σ,Φ). ��

6 Related Work

The conjecture 7.7 in [11] (also in [8]) is that the provability of LKID is the
same as that of CLKIDω. In general, the equivalence was proved to be false
in [4], by showing a counterexample. However, if we restrict both systems to
only the natural number inductive predicate and add Peano arithmetic to both
systems, the equivalence was proved to be true in [20], by internalizing a cyclic
proof in ACA0 and using some results in reverse mathematics. [5] proved that if
we add Peano arithmetic to both systems, CLKIDω and LKID are equivalent,
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namely the equivalence is true under arithmetic, by showing arithmetical Ramsey
theorem and Podelski-Rybalchenko theorem for induction.

This paper shows that similar results as shown in [5] hold for intuitionistic
logic, namely, the provability of LJID is the same as that of CLJIDω if we add
Heyting arithmetic to both systems.

The results of this paper immediately give another proof to the equivalence
under arithmetic for classical logic shown in [5] by using the fact Γ �CLKIDω+PA

Δ implies E,Γ,¬Δ �CLJIDω+HA for some finite set E of excluded middles.
By taking

−→
Q and

−→
P to be empty in Theorem 4.4, we have conservativity of

CLJIDω + HA over LJID + HA with only the inductive predicate N , which
answers the question (iv) in Sect. 7 of [20].

[15] presented the first logical system for inductive/coinductive predicates.
[17] also gave a similar system. They are both based on a finite system with unfold
and fold, and limited to propositional logic. [21] showed the completeness of the
system by using a cyclic proof system but it is also limited to propositional logic.
[2,14] investigated cyclic proof systems for inductive/coinductive predicates. [1,
13] also used cyclic proof systems for inductive/coinductive predicates to show
some completeness results. But these systems are all limited to propositional
logic.

7 Conclusion

We have first shown intuitionistic Podelski-Rybalchenko theorem for induction
in HA, and we have secondly shown the provability of the intuitionistic cyclic
proof system is the same as that of the intuitionistic system of Martin-Lof’s
inductive definitions when both systems contain HA. We have also constructed
a cyclic proof system μνLK for stream predicates.

One future work would be to construct a cyclic proof system for coinductive
predicates in a general way and show the equivalence between the cyclic proof
system and other logical systems for coinductive predicates.
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