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Abstract. Perivascular spaces (PVS) in the human brain are related to
various brain diseases or functions, but it is difficult to quantify them in
a magnetic resonance (MR) image due to their thin and blurry appear-
ance. In this paper, we introduce a deep learning based method which
can enhance a MR image to better visualize the PVS. To accurately
predict the enhanced image, we propose a very deep 3D convolutional
neural network which contains densely connected networks with skip
connections. The densely connected networks can utilize rich contextual
information derived from low level to high level features and effectively
alleviate the gradient vanishing problem caused by the deep layers. The
proposed method is evaluated on seventeen 7T MR images by a two-
fold cross validation. The experiments show that our proposed network
is more effective to enhance the PVS than the previous deep learning
based methods using less layers.
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1 Introduction

Perivascular spaces (PVS) are thin fluid-filled spaces in the human brain.
Recently, studies have shown that increasing the PVS number and thickening
the PVS are associated with brain diseases [1]. Also, it is revealed that the PVS
enlargement is related to cognitive abilities of healthy elderly men [2]. To demon-
strate these hypotheses, it is necessary to quantify the relationship between the
thickness, length, distribution of PVS and the brain diseases or functions.

However, the PVS are not clearly visible in magnetic resonance (MR) images
acquired by traditional 1.5T, 3T or even by 7T MR scanners. Accordingly, Bouvy
et al. [3] and Zong et al. [4] proposed novel acquisition parameters of 7T MR
scanner that make the PVS more visible. However, it is difficult to find the
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parameters which can improve only the PVS while reducing the noisy in back-
ground. Thus, distinguishing small PVS is still difficult although several methods
have been proposed to segment the PVS from MR images [5,6].

Accordingly, instead of carefully looking for a certain specific parameter of
MR scanner, several studies have been proposed to enhance the PVS by using
image processing methods after the MR images are acquired. For example,
Uchiyama et al. [7] used the white top hat transform to highlight the tubu-
lar structures and proved that this enhancement is effective to detect the PVS.
Hou et al. [8] proposed a method which improves the intensity of thin tubu-
lar structures using a nonlinear mapping function in Haar domain, and then
removes noisy in background by using the block matching filtering. Although
these methods help to extract the PVS by enhancing the intensity of PVS, they
require heuristic parameter tuning such as controlling the filter size or defining
the parameters of nonlinear mapping function according to the image.

In this paper, we propose an end to end PVS enhancement method which does
not require the heuristic parameter tuning and the additional processing steps
for distinguishing the PVS from noisy. Specifically, we suggest a very deep 3D
neural network consisting of 39 convolution layers which are densely connected
by skip connections. The proposed network using the dense skip connections
effectively improves the prediction accuracy by utilizing rich contextual infor-
mation derived from low level to high level features and alleviating the gradient
vanishing problem. The prediction accuracy of our proposed network was eval-
uated on seventeen 7T MR images. Experimental results show that our deep
network is more effective to enhance the PVS than the state-of-the-art deep
learning based image enhancement methods.

1.1 Related Works

Deep learning based methods have achieved the best performance for the super
resolution problem which converts a low resolution image into a high resolution
image. For example, Dong et al. [9] proposed a method using three convolution
layers and achieved better prediction results than the previous methods using
sparse coding and regression. After that, several studies using deeper network
[10,11] have been proposed to utilize higher level contextual features. Specifically,
Kim et al. [10] proposed a recursive neural network to reflect a large contextual
information without additional weight parameters and Tong et al. [11] proposed
a network using densely connected blocks with skip connections to reflect the
various levels of features for the prediction.

In this paper, we apply the deep neural networks, mainly have been applied
to the super resolution of 2D images, to the enhancement of PVS in 3D MR
images. The PVS are thin and oriented at different angles in three dimensions,
and thus it is difficult to distinguish the PVS from noisy in a 2D image. In
addition, since the difference between a MR image and its enhanced MR image
is relatively larger (see Fig. 2) than that between the low resolution image and
the high resolution image in super resolution, sophisticated contextual features
need to be learned. Therefore, we design a very deep 3D network including six
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dense blocks and dense skip connections to reduce the feature redundancy and
utilize the rich contextual information in three dimensions. Although several 3D
networks [12–14] recently have been proposed for the super resolution of MR
images, those models use shallow structures while our model includes six dense
blocks and skip connections between them. The closest model to our proposed
network is the network proposed by Tong et al. [11], but our model consists of
3D layers and there are some differences in the structure such as not using a
deconvolution layer. To the best of our knowledge, this is the first work to use
the deep learning based method for the PVS enhancement.

2 Method

We introduce a deep learning based method which generates an enhanced 7T
MR image from a 7T MR image. Learning a deep network that maps the whole
3D MR image is infeasible due to memory limitations. Thus, if an image is given,
we sample 3D patches at a regular interval, and then perform the prediction in
each patch using a deep 3D convolutional neural network, and finally generate
the whole enhanced image by merging the predictions on the 3D patches. Since
the predictions near the boundary of patch may not be accurate, the predictions
on the central region are collected to generate the whole enhanced image. The
sampling interval is determined so that the prediction is obtained in every voxel.

In the training step, we sample the 3D patches from 7T MR images and those
from their enhanced 7T MR images in a training set, and then learn the deep 3D
convolutional neural network which learns the relationship between patches. The
proposed network consists of an initial convolution layer for learning low level
features, several dense blocks for learning middle level to high level features, a
bottleneck layer for reducing the number of feature maps, and a prediction layer
for generating the enhanced 3D patch. Figure 1 shows the proposed network and
detailed descriptions follow in the subsections.

Fig. 1. The proposed deep 3D convolutional neural network for PVS enhancement.
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2.1 Densely Connected Deep Neural Network

The proposed network learns the relationship between the patch X sampled from
a 7T MR image and the patch Y from its enhanced 7T MR image. The rele-
vance is parameterized by weights w = [w1, ..., wN ] and residuals b = [b1, ..., bN ]
between layers where N is the number of convolution layers, and X is trans-
formed into P (X,w,b) by those parameters. In training, the parameters w
and b are updated by an optimizer so that the mean squared error between
P (X,w,b) and Y is minimized.

The proposed network consists of 39 convolution layers (N = 39). First, the
input patch X is passed through a convolution layer and then six dense blocks
where each dense block consists of 6 convolution layers to produce low level to
high level feature maps. Specifically, 8 kernels with a size 3 × 3 × 3 is used for
the convolution layers and a rectified linear unit (ReLU) layer is connected for
nonlinear mapping behind each convolution layer.

In each dense block, as proposed by Huang et al. [15], the feature maps
generated in previous layers are concatenated and pass through a convolution
layer to generate new feature maps. The new feature maps are also concatenated
to the previous feature maps and then pass through the next convolution layer.
Thus, the number of feature maps linearly increased by the number of kernel.
Since we use six convolution layers with 8 kernels, the number of feature maps
increased by 8 in six times and the dense block generates 48 feature maps. The
concatenation of the feature maps not only reduces the number of parameters
but also alleviates the vanishing gradient problem. Finally, the 8 feature maps
generated from the last layer are used as the input of the next dense block.

After passing through all six dense blocks, the prediction can be performed
by using the feature maps from the 6th dense block. However, in this way, the
low level and middle level features extracted by the initial layer and the initial
dense blocks are rarely reflected in the prediction. Thus, to use all levels of
information for the prediction, we use skip connections between the following
layer and the initial convolution layer and six dense blocks. Specifically, 8 feature
maps obtained from the initial convolution layer and all 288 (= 48 × 6) feature
maps from six dense blocks are connected to the following layer in the network.

Connecting all these feature maps to the prediction layer for predicting a
single channel output at once (i.e., 296 to 1) is computationally inefficient and
hard to keep the model compactness. Therefore, a 1×1×1 convolution layer with
16 kernels is utilized as the bottleneck layer between the 6th dense block and the
prediction layer to reduce the number of feature maps. Finally, the 16 feature
maps generated from the bottleneck layer are passed through the prediction layer
to predict the final output (i.e., 296 to 16, and then 16 to 1). With through the
bottleneck layer, prediction can be more accurate and efficient, since this layer
use all feature map from low to high levels and reduce the number of feature
map in computationally efficient way.
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2.2 Implementation Details

Most PVS are located in the white matter and the non-brain region is large in
a MR image. Thus, it is inefficient to sample the training patches in the whole
image. We extracted the brain region by using the brain extraction tool [16] and
then sampled 3D patches which contain a part of brain region for training. The
patch size was determined as 60 × 60 × 60 by considering the receptive field of
our network. In testing, we similarly extracted the brain region using [16], and
then estimated the enhanced image by performing the prediction on 60×60×60
3D patches containing the brain region and merging them.

Regarding the proposed network, the weights w were initialized by the
method proposed in [17] and the biases b were initialized to 0. ReLU was used
for the activation function and the batch size was set as 5. The Adam opti-
mizer was used to minimize the mean squared error between P (X,w,b) and Y .
The learning rate was initially set as 0.0001 and then decreased by 2 × 10−7

for each epoch. The experiment was ended up to 500 epochs. The method was
implemented using Tensorflow and all training and testing were performed on a
workstation with NVIDIA Titan XP GPU.

3 Experimental Results

3.1 Evaluation Setting

Seventeen 7T MR images were used for the experiment. For training and valida-
tion, we made those enhancement images by using the Hou et al.’s method [8].
The enhanced images were used for computing the mean square error in train-
ing, while used for evaluating the prediction accuracy in testing. We divided the
images into two subsets and then performed a two-fold cross validation.

The prediction accuracy was measured by PSNR and SSIM between the pre-
dicted images and the enhanced images. The PSNR and SSIM were measured in
the white matter as well as in the whole brain region since most PVS were in the
white matter. The white matter was extracted by an brain tissue segmentation
method [18].

To demonstrate the superiority of the proposed network (DCNN6+SC+B)
using the six dense blocks, skip connections (SC), and bottleneck layer (B), we
compared this with SRCNN [9] using three convolution layers with the kernel
sizes 9, 5, and 5 and DCNN [13] using only one dense block for the prediction.
To demonstrate the effect of skip connections between the dense blocks and the
bottleneck layer, we provide the results obtained by the deep networks without
the skip connections and the bottleneck layer (DCNN6 and DCNN6+SC). In
addition, to demonstrate the effect of network depth related to the number of
parameters and the size of receptive field, we provide the results obtained by
using the proposed networks with two and four dense blocks (DCNN2+SC+B
and DCNN4+SC+B, respectively) instead of six dense blocks.

For a fair comparison, we modified 2D SRCNN [9], which was proposed for
the image super resolution problem, to the 3D network to address the PVS
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enhancement problem. Also, we modified the kernel size and the number of
layers of DCNN [13], which was proposed for the super resolution of a brain MR
image, to be comparable with our network.

Table 1. Mean PSNR (dB) and SSIM scores between the predictions and the enhanced
images, and the training time for each method. The scores were measured in the white
matter (WM) and in the brain region (Brain), respectively. SC represents the skip
connections, B represents the bottleneck layer, and bold indicates the highest score.

PSNR-WM PSNR-Brain SSIM-WM SSIM-Brain Time (hour)

SRCNN [9] 36.373 30.957 0.962 0.924 4.5

DCNN [13] 37.647 31.951 0.971 0.942 2.5

DCNN6 38.518 32.825 0.975 0.950 12

DCNN6+SC 38.636 32.918 0.975 0.951 14.5

DCNN2+SC+B 38.040 32.386 0.973 0.947 4

DCNN4+SC+B 38.420 32.718 0.975 0.949 8

DCNN6+SC+B 38.739 33.015 0.976 0.951 12.5

3.2 Result

Table 1 shows the mean PSNR and SSIM measured from the results obtained
by the proposed method and the comparison methods, and the computational
times for training. The result obtained by SRCNN was the worst since the small
number of hidden layers could not produce the high level features useful for
prediction. DCNN achieved better performances than SRCNN with less com-
putations. The deeper network and the skip connections between convolution
layers helped to use relatively high level features while reducing the number of
parameters. Likewise, DCNN6 composed of approximately six times more layers
achieved much better results since the deeper network could learn the higher
level features on a large receptive field which could not be considered in DCNN.

The method using the dense skip connections (DCNN6+SC) further
improved the performance by predicting the enhanced image with the low level to
high level features together on a large receptive field. Using the bottleneck layer
also helped to improve the performance slightly while reducing the computa-
tion (DCNN6+SC+B). According to the results obtained by DCNN2+SC+B,
DCNN4+SC+B, and DCNN6+SC+B, we could confirm that the performance
was improved as the depth of network deepened.

Figure 2 shows the qualitative results obtained by SRCNN, DCNN, and the
proposed method. SRCNN or DCNN improved the PVS, but noises near the
PVS were not suppressed effectively. On the other hand, the prediction results
obtained by our proposed method were very similar to the enhanced images.
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Fig. 2. Visual comparison between the proposed method and the comparison methods
on several local regions. (a) Regions in original images, (b) the results obtained by
SRCNN [9], (c) the results by DCNN [13], (d) the results by our proposed method
(DCNN6+SC+B), and (e) regions in the enhanced images.

4 Conclusion

We have proposed a novel PVS enhancement method using a deep dense network
with skip connections. We have demonstrated that the deep learning techniques
usually used for the super resolution problem can be used for the PVS enhance-
ment problem. The proposed method does not require empirical parameter tun-
ing and additional processing such as denoising. The proposed deep network has
outperformed the state-of-the-art deep learning networks and it has been proved
that using various levels of features is helpful to improve the prediction accuracy.
In the future, we will perform several experiments to prove how the proposed
method can help in PVS segmentation and quantitative analysis.
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