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Abstract. Recently, many researchers have attempted to apply deep neural
networks to detect Atrial Fibrillation (AF). In this paper, we propose an
approach for prediction of AF instead of detection using Deep Convolutional
Neural Networks (DCNN). This is done by classifying electrocardiogram
(ECG) before AF into normal and abnormal states, which is hard for the car-
diologists to distinguish from the normal sinus rhythm. ECG is transformed into
spectrogram and trained using VGG16 networks to predict normal and abnormal
signals. By changing the time length of abnormal signals and making up their
own datasets for preprocessing, we investigate the changes in F1-score for each
dataset to explore the right time to alert the occurrence of AF.
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1 Introduction

Atrial Fibrillation (AF) is one of the common cardiac arrythmia in patients, which is
usually accompanied by other serious symptoms such as stroke [1]. This irregular heart
rhythm also increases the chance of occurrence of heart failures and mortality in
arrythmia patients [2]. Then, it is crucial to detect and predict AF as early as possible.
Many machine learning approaches have been used to classify normal sinus rhythm
and cardiac arrythmias from electrocardiogram (ECG) [3–5]. Recently, deep learning
has reported its successful contributions to various areas such as image classification
[6–9]. Many researchers have applied deep neural networks to monitor the occurrence
of AF. Among which, convolutional neural networks (CNN) and recurrent neural
networks (RNN) have been popular in feature extraction to detect AF and other
arrythmias [10–13]. However, they have been focused on detection and not prediction
of AF. A few researches have challenged to predict AF before it happens using
machine learning and neural networks [14, 15]. In this paper, we propose a new AF
prediction algorithm to explore the prelude of AF that is difficult for the cardiologists to
identify using Deep Convolutional Neural Networks (DCNN). The ECG signals before
AF are divided into normal and abnormal signals, and the time length of each of these
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two classes are different. Then, we train VGG16 networks [16] and measure F1-scores
for each different label case to check the dynamics of ECG before AF.

2 Scenario of Prediction to AF

Figure 1 shows the scenario of predicting normal and abnormal states from ECG. To
predict prelude of AF, we divide the ECG signals (before the occurrence of AF) into
normal signal and abnormal signal. Normal signal is the same as regular sinus rhythm,
however, abnormal signal is difficult to be distinguished from normal signal with
human eye. The goal of the scenario is to alert arrythmia patients 4–5 min ahead the
possibility of occurrence of AF by monitoring their ECG continuously.

3 Data Preprocessing

3.1 Dataset

We use single-lead ECG dataset provided by Keimyung University Dongsan Medical
Center (KUDMC), which is private and anonymized. We use ECG signals that are
about 10 min long to predict normal and abnormal signals before AF to predict normal
and abnormal signals as mentioned in Fig. 1. We choose to train each patient’s data
separately because hemodynamic response i.e. the average rhythm and characteristic of
the heart beat is unique to each patient [2]. So, the dataset for patient-dependent model
requires long sequences of each patient which contains both normal sinus rhythm and
AF. From the restricted condition, we choose ECG signals of three patients because
ECG records have very few cases of the continuation of normal and AF signals. To
provide more experiments, we additionally use two records of paroxysmal AF
(PAF) from PhysioNet dataset [15, 17]. Table 1 illustrates the number of obtained
spectrograms from ECG signals, duration of ECG, and data source.

Fig. 1. Scenario for prediction of AF. ECG signal is divided into normal and abnormal signals
before occurrence of AF. DCNN learns and predicts if the signal is in normal state or in abnormal
state.
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3.2 Preprocessing

Figure 2 shows the preprocessing of ECG signals. Since ECG is a time-series data, we
transform ECG into spectrograms to be used as the input for CNN. Spectrograms are
generated using short-time Fourier transform of every 30 s ECG signals with an
overlap of 1 s [14].

3.3 VGG16

To classify very similar but different signals, i.e. normal and abnormal states, we
utilizes DCNN because it is considered as the powerful algorithm in image processing
field for its successful performance to image classification in ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) in 2012 [7]. VGG16 network is one of the
DCNN which consists of 13 convolution and pooling layers and 3 fully-connected
layers [16]. In this paper, VGG16 is considered to predict normal and abnormal states
since it has a deep architecture with good performance for image classification. We use
VGG16 networks implemented with Keras [18]. To overcome the paucity of data
samples, pretrained weights from ImageNet [7] are considered and fine-tuned for
normal and abnormal classes. The architecture of VGG16 is as shown in Fig. 3.

Table 1. Dataset information

Patients # of spectrograms Duration of ECG [minutes] Source of data

Patient 1 1879 23 KUDMC
Patient 2 272 9 KUDMC
Patient 3 363 10 KUDMC
Patient 4 299 30 PhysioNet
Patient 5 299 30 PhysioNet

Fig. 2. Preprocessing of the ECG signals convert to spectrograms. P1, P2 are patients. From
their ECG records, we divide normal and abnormal periods. The divided ECG signals are
transformed in to spectrograms to use them as input to CNN. Each patient’s dataset is used to
train its own subject specific model.
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3.4 Training Configuration

The input of VGG16 is spectrograms obtained from ECG of size 256 � 256. The
output is two classes with normal ([1 0]) and abnormal ([0 1]) signals. Optimizer is
ADAM [19]. We applied dropout [20] and batch normalization [21] to fully-connected
layers to stabilize training and validation loss.

Fig. 3. Architecture of VGG16 network. To solve AF prediction problem, we modified fully
connected layers and the dimension of the output layer.
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4 Experiments

Not only to predict normal and abnormal ECG signals but also to find proper time to
alert the occurrence of AF, we make up abnormal states as 4, 5, and 6 min before AF.
By varying abnormal periods, we obtain 3 cases of datasets for each patient as shown in
Fig. 4.

We train VGG16 network for each dataset and every patient. We measure the F1-
scores after the training process and test the accuracies to investigate the discrimination
of each case of abnormal states. Each F1-score is the average of F1-scores calculated
from three times experiments with the same training and test set. We additionally
prepare several baseline models to compare them to VGG16. Since Multi-Layer Per-
ceptron (MLP) and Support Vector Machine (SVM) are not suitable for high dimen-
sional data i.e. spectrograms, we consider standard CNN and Long-Short Term
Memory (LSTM) networks [22] as baseline models. The simple CNN consists of two
convolution layers, one max pooling layer, and fully connected layers. The LSTM
model has 1 LSTM cell and fully connected layers.

4.1 Model Performance

For each case of abnormal state, we measure F1-scores of each model as shown in
Table 2. VGG16 reports higher F1-scores compared to standard CNN and LSTM.
LSTM fails to learn the data for patient 3, 4 and 5 with low F1-scores as mentioned in
Table 2, whereas standard CNN and VGG16 converge their train losses. The better F1-
scores of VGG16 shows that the deeper CNN architecture is good for learning our
datasets.

As shown in the table, every patient shows different F1-scores. The diversity in
dynamics of F1-score is considered since patients can have their own hemodynamic
consequences in their ECG records [2]. The lower F1-score indicates that normal and
abnormal states are hard to believe the prediction results by the DCNN. Whereas, the
higher F1-score indicates that normal and abnormal states are easy to distinguish with
high reliability. In Fig. 4, Patient 1 and 5 show a monotonic decrease of F1-scores.

Fig. 4. Varying the length of abnormal states to explore proper alert time for AF.
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It indicates that the 4-min case has higher discrimination compared to 5 and 6-min
cases. Patients 4 is the opposite case of Patient 1 and 5, which means that the prediction
accuracy is more believable through time. For Patients 2 and 3, the prediction of AF is
more believable in 4 and 6 min. Those results show that the change in F1-scores
implies the relative reliability of prediction results for existence of abnormal state
before AF happens.

4.2 Application to Alert the Occurrence of AF

Figure 5 shows the change of test accuracies and F1-scores for datasets which have
different length of abnormal states for each patient. In each figure, the markers indicate
the highest accuracy and F1-score to predict test data as normal or abnormal signals.

Table 2. F1-scores of VGG16 and baseline models (standard CNN and LSTM) for various case
of abnormal states

Model Case of Abnormal states
[minutes]

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

VGG16 4 0.6 0.76 0.57 0.65 0.72
5 0.57 0.57 0.41 0.69 0.62
6 0.54 0.70 0.61 0.72 0.56

CNN 4 0.5 0.56 0.36 0.42 0.57
5 0.4 0.54 0.46 0.55 0.53
6 0.44 0.59 0.39 0.4 0.42

LSTM 4 0.46 0.6 0.33 0.33 0.33
5 0.36 0.52 0.38 0.33 0.33
6 0.6 0.49 0.33 0.33 0.33

Fig. 5. Change of test accuracies and F1-scores for 4, 5, 6 minute-dataset for patients. The
Markers in each figure indicate the highest accuracy and F1-score for its abnormal section.
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Since F1-score considers both precision and recall unlike the accuracy, the dynamics
between accuracies and F1-scores looks different for each patient as shown in Fig. 5.
By considering the abnormal periods from the highest accuracy verified by its F1-score
as the confidence for the prelude of AF, it has chance for application to alert the
occurrence of AF to both doctors and patients to determine if AF could happen.

5 Conclusion and Future Works

Prediction of AF is a crucial task to save the patient’s life because AF could lead to
fatal diseases. In this paper, we attempted to predict the prelude of AF using DCNN.
We trained VGG16 network to predict normal sinus rhythm and abnormal signals, and
measured F1-scores for different length of abnormal states. The F1-score range of
patients showed that it had subject specific discriminant patterns. DCNN suggests that
there are some abnormal signals before AF that are difficult to distinguish from normal
signals.

For future work, it is possible to analyze wider range of abnormal sections to
explore F1-score dynamics and additional experiments with more patients can be
considered. Also, we are considering a new DCNN learning algorithm to detect very
sensitive variation of AF signals in normal and abnormal conditions. Finally, the
research to automate the exploration of proper alert time is recommended.

Acknowledgements. This work was partly supported by Institute for Information & commu-
nications Technology Promotion (IITP) grant funded by the Korea government (MSIT) (2016-0-
00564, Development of Intelligent Interaction Technology Based on Context Awareness and
Human Intention Understanding) (30%), Institute for Information & communications Technol-
ogy Promotion (IITP) grant funded by the Korea government (MSIT) (2018-2-00861, Intelli-
gent SW Technology Development for Medical Data Analysis) (40%) and the Ministry of Trade,
Industry & Energy (MOTIE, Korea) under Industrial Technology Innovation Program.
No.1063553, ‘Self-directed portable safety kits and application based living environment service
system’ (30%).

References

1. Wolf, P.A., Abbott, R.D., Kannel, W.B.: Atrial fibrillation as an independent risk factor for
stroke: the Framingham Study. Stroke 22(8), 983–988 (1991)

2. Dries, D., Exner, D., Gersh, B., Domanski, M., Waclawiw, M., Stevenson, L.: Atrial
fibrillation is associated with an increased risk for mortality and heart failure progression in
patients with asymptomatic and symptomatic left ventricular systolic dysfunction: a
retrospective analysis of the SOLVD trials. J. Am. Coll. Cardiol. 32(3), 695–703 (1998)

3. Polat, K., Güneş, S.: Detection of ECG Arrhythmia using a differential expert system
approach based on principal component analysis and least square support vector machine.
Appl. Math. Comput. 186(1), 898–906 (2007)

4. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over encrypted
data. In: NDSS, p. 4325 (2015)

5. Li, Q., Rajagopalan, C., Clifford, G.D.: Ventricular fibrillation and tachycardia classification
using a machine learning approach. IEEE Trans. Biomed. Eng. 61(6), 1607–1613 (2014)

170 J. Cho et al.



6. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional

neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105
(2012)

8. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput.
Vision 115(3), 211–252 (2015)

9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–
778 (2016)

10. Rajpurkar, P., Hannun, A.Y., Haghpanahi, M., Bourn, C., Ng, A.Y.: Cardiologist-level
arrhythmia detection with convolutional neural networks. arXiv preprint arXiv:170701836
(2017)

11. Poh, M.-Z., et al.: Diagnostic assessment of a deep learning system for detecting atrial
fibrillation in pulse waveforms. Heart:heartjnl-2018-313147 (2018)

12. Oh, S.L., Ng, E.Y., San Tan, R., Acharya, U.R.: Automated diagnosis of arrhythmia using
combination of CNN and LSTM techniques with variable length heart beats. Comput. Biol.
Med. (2018)

13. Xia, Y., Wulan, N., Wang, K., Zhang, H.: Detecting atrial fibrillation by deep convolutional
neural networks. Comput. Biol. Med. 93, 84–92 (2018)

14. Kim, J., Sangjun, O., Kim, Y., Lee, M.: Convolutional neural network with biologically
inspired retinal structure. Procedia Comput. Sci. 88, 145–154 (2016)

15. Bianchi, F.M., Livi, L., Ferrante, A., Milosevic, J., Malek, M.: Time series kernel similarities
for predicting Paroxysmal Atrial Fibrillation from ECGs. arXiv preprint arXiv:180106845
(2018)

16. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:14091556 (2014)

17. PhysioNet: The PAF Prediction Challenge Database (2001). https://physionet.org/
physiobank/database/afpdb/

18. Chollet, F.: Keras (2015)
19. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:

14126980 (2014)
20. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a

simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–
1958 (2014)

21. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing
internal covariate shift. arXiv preprint arXiv:150203167 (2015)

22. Sak, H., Senior, A., Beaufays, F.: Long short-term memory recurrent neural network
architectures for large scale acoustic modeling. In: Fifteenth Annual Conference of the
International Speech Communication Association (2014)

Prediction to Atrial Fibrillation Using Deep Convolutional Neural Networks 171

http://arxiv.org/abs/170701836
http://arxiv.org/abs/180106845
http://arxiv.org/abs/14091556
https://physionet.org/physiobank/database/afpdb/
https://physionet.org/physiobank/database/afpdb/
http://arxiv.org/abs/14126980
http://arxiv.org/abs/14126980
http://arxiv.org/abs/150203167

	Prediction to Atrial Fibrillation Using Deep Convolutional Neural Networks
	Abstract
	1 Introduction
	2 Scenario of Prediction to AF
	3 Data Preprocessing
	3.1 Dataset
	3.2 Preprocessing
	3.3 VGG16
	3.4 Training Configuration

	4 Experiments
	4.1 Model Performance
	4.2 Application to Alert the Occurrence of AF

	5 Conclusion and Future Works
	Acknowledgements
	References




